forked from MarkFzp/act-plus-plus
-
Notifications
You must be signed in to change notification settings - Fork 0
/
vinn_cache_feature.py
148 lines (126 loc) · 5.39 KB
/
vinn_cache_feature.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import torch
import argparse
import pathlib
from torch import nn
import torchvision
import os
import time
import h5py
import h5py
from torchvision import models, transforms
from PIL import Image
from tqdm import tqdm
import cv2
import numpy as np
import IPython
e = IPython.embed
def chunks(lst, n):
"""Yield successive n-sized chunks from lst."""
for i in range(0, len(lst), n):
yield lst[i:i + n]
def expand_greyscale(t):
return t.expand(3, -1, -1)
def main(args):
#################################################
batch_size = 256
#################################################
ckpt_path = args.ckpt_path
dataset_dir = args.dataset_dir
ckpt_name = pathlib.PurePath(ckpt_path).name
dataset_name = ckpt_name.split('-')[1]
repr_type = ckpt_name.split('-')[0]
seed = int(ckpt_name.split('-')[-1][:-3])
if 'cotrain' in ckpt_name:
repr_type += '_cotrain'
episode_idxs = [int(name.split('_')[1].split('.')[0]) for name in os.listdir(dataset_dir) if ('.hdf5' in name) and ('features' not in name)]
episode_idxs.sort()
assert len(episode_idxs) == episode_idxs[-1] + 1 # no holes
num_episodes = len(episode_idxs)
feature_extractors = {}
for episode_idx in range(num_episodes):
# load all images
print(f'loading data')
dataset_path = os.path.join(dataset_dir, f'episode_{episode_idx}.hdf5')
with h5py.File(dataset_path, 'r') as root:
image_dict = {}
camera_names = list(root[f'/observations/images/'].keys())
print(f'Camera names: {camera_names}')
for cam_name in camera_names:
image = root[f'/observations/images/{cam_name}'][:]
uncompressed_image = []
for im in image:
im = np.array(cv2.imdecode(im, 1))
uncompressed_image.append(im)
image = np.stack(uncompressed_image, axis=0)
image_dict[cam_name] = image
print(f'loading model')
# load pretrain nets after cam names are known
if not feature_extractors:
for cam_name in camera_names:
resnet = torchvision.models.resnet18(pretrained=True)
loading_status = resnet.load_state_dict(torch.load(ckpt_path.replace('DUMMY', cam_name)))
print(cam_name, loading_status)
resnet = nn.Sequential(*list(resnet.children())[:-1])
resnet = resnet.cuda()
resnet.eval()
feature_extractors[cam_name] = resnet
# inference with resnet
feature_dict = {}
for cam_name, images in image_dict.items():
# Preprocess images
image_size = 120 # TODO NOTICE: reduced resolution
transform = transforms.Compose([
transforms.Resize(image_size), # will scale the image
transforms.CenterCrop(image_size),
transforms.ToTensor(),
transforms.Lambda(expand_greyscale),
transforms.Normalize(
mean=torch.tensor([0.485, 0.456, 0.406]),
std=torch.tensor([0.229, 0.224, 0.225])),
])
processed_images = []
for image in tqdm(images):
image = Image.fromarray(image)
image = transform(image)
processed_images.append(image)
processed_images = torch.stack(processed_images).cuda()
# query the model
all_features = []
with torch.inference_mode():
for batch in chunks(processed_images, batch_size):
print('inference')
features = feature_extractors[cam_name](batch)
features = features.squeeze(axis=3).squeeze(axis=2)
all_features.append(features)
all_features = torch.cat(all_features, axis=0)
max_timesteps = all_features.shape[0]
feature_dict[cam_name] = all_features
# TODO START diagnostics
# first_image = images[0]
# first_processed_image = processed_images[0].cpu().numpy()
# first_feature = all_features[0].cpu().numpy()
# import numpy as np
# np.save('first_image.npy', first_image)
# np.save('first_processed_image.npy', first_processed_image)
# np.save('first_feature.npy', first_feature)
# torch.save(resnet.state_dict(), 'rn.ckpt')
# e()
# exit()
# TODO END diagnostics
# save
dataset_path = os.path.join(dataset_dir, f'{repr_type}_features_seed{seed}_episode_{episode_idx}.hdf5')
print(dataset_path)
# HDF5
t0 = time.time()
with h5py.File(dataset_path, 'w', rdcc_nbytes=1024 ** 2 * 2) as root:
features = root.create_group('features')
for cam_name, array in feature_dict.items():
cam_feature = features.create_dataset(cam_name, (max_timesteps, 512))
features[cam_name][...] = array.cpu().numpy()
print(f'Saving: {time.time() - t0:.1f} secs\n')
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='cache features')
parser.add_argument('--ckpt_path', type=str, required=True, help='ckpt_path')
parser.add_argument('--dataset_dir', type=str, required=True, help='dataset_dir')
args = parser.parse_args()
main(args)