-
Notifications
You must be signed in to change notification settings - Fork 12
/
capsule.py
231 lines (184 loc) · 8.03 KB
/
capsule.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# -*- encoding:utf -*-
# Refer to XifengGuo's CapsNet-Keras(https://github.com/XifengGuo/CapsNet-Keras)
from __future__ import print_function
import keras
import keras.backend as K
from keras import layers
from keras import utils
from keras.utils import conv_utils
from keras import initializers
from keras.layers import Input, Conv2D
from keras.models import Model, Sequential
import os
import numpy as np
def softmax(x, axis=-1):
"""
Self-defined softmax function
"""
x = K.exp(x - K.max(x, axis=axis, keepdims=True))
x /= K.sum(x, axis=axis, keepdims=True)
return x
def margin_loss(y, pred):
"""
For the first part of loss(classification loss)
"""
return K.mean(K.sum(y * K.square(K.maximum(0.9 - pred, 0)) + \
0.5 * K.square((1 - y) * K.maximum(pred - 0.1, 0)), axis=1))
def squash(s, axis=-1):
"""
Squash function. This could be viewed as one kind of activations.
"""
squared_s = K.sum(K.square(s), axis=axis, keepdims=True)
scale = squared_s / (1 + squared_s) / K.sqrt(squared_s + K.epsilon())
return scale * s
class Length(layers.Layer):
"""
Compute the lengths of capsules.
The values could be viewed as probability.
"""
def call(self, inputs, **kwargs):
return K.sqrt(K.sum(K.square(inputs), axis=-1))
def compute_output_shape(self, input_shape):
return (input_shape[0], input_shape[1])
class Mask(layers.Layer):
"""
Mask for the true answer or the predicted answer.
"""
def call(self, inputs, **kwargs):
# inputs -> (X, y), then output the mask of y
# inputs -> X, then output the mask of prediction
if type(inputs) is list or tuple:
inputs, mask = inputs
else:
pred = K.sqrt(K.sum(K.square(inputs), axis=-1) + K.epsilon())
mask = K.one_hot(indices=K.argmax(pred, 1), num_classes=pred.get_shape().as_list()[1])
return K.batch_flatten(inputs * K.expand_dims(mask, axis=-1))
def compute_output_shape(self, input_shape):
if type(input_shape[0]) is list or tuple:
return (input_shape[0][0], input_shape[0][1] * input_shape[0][2])
else:
return (input_shape[0], input_shape[1] * input_shape[2])
class DigiCaps(layers.Layer):
"""
Compute the operations between two layers of capsules.
"""
def __init__(self, num_capsule, dim_capsule, num_routing=3,
kernel_initializer='glorot_uniform', name='digitcaps', **kwargs):
super(DigiCaps, self).__init__(**kwargs)
self.num_capsule = num_capsule
self.dim_capsule = dim_capsule
self.num_routing = num_routing
self.kernel_initializer = initializers.get(kernel_initializer)
def build(self, input_shape):
assert len(input_shape) >= 3
self.input_num_capsule = input_shape[1]
self.input_dim_capsule = input_shape[2]
self.W = self.add_weight(shape=[self.num_capsule, self.input_num_capsule,
self.dim_capsule, self.input_dim_capsule],
initializer=self.kernel_initializer,
name='W_cap')
def call(self, inputs, **kwargs):
# (batch_size, 1, input_num_capsule, input_dim_capsule)
expand_inputs = K.expand_dims(inputs, axis=1)
# (batch_size, num_capsule, input_num_capsule, input_dim_capsule)
expand_inputs = K.tile(expand_inputs, (1, self.num_capsule, 1, 1))
# (batch_size, num_capsule, input_num_capsule, dim_capsule)
u_hat = K.map_fn(lambda x: K.batch_dot(x, self.W, axes=[2, 3]), expand_inputs)
if self.num_routing <= 0:
self.num_routing = 3
# (batch_size, num_capsule, input_num_capsule)
b = K.zeros((K.shape(u_hat)[0], self.num_capsule, self.input_num_capsule))
for i in xrange(self.num_routing):
# (batch_size, num_capsule, input_num_capsule)
c = softmax(b, axis=1)
# (batch_size, num_capsule, dim_capsule)
s = K.batch_dot(c, u_hat, axes=[2, 2])
squashed_s = squash(s)
if i < self.num_routing - 1:
# (batch_size, num_capsule, input_num_capsule)
b += K.batch_dot(squashed_s, u_hat, axes=[2, 3])
return squashed_s
def compute_output_shape(self, input_shape):
return (None, self.num_capsule, self.dim_capsule)
class PrimaryCapsules(layers.Layer):
"""
Convert the input into the capsule format.
"""
def __init__(self, filters, kernel_size, dim_capsule, padding='valid', strides=(1, 1), **kwargs):
super(PrimaryCapsules, self).__init__(**kwargs)
self.filters = filters
self.kernel_size = kernel_size
if type(self.kernel_size) is int:
self.kernel_size = (self.kernel_size, self.kernel_size)
self.dim_capsule = dim_capsule
self.padding = padding
self.strides = strides
def build(self, input_shape):
assert len(input_shape) == 4
self.conv1 = Conv2D(filters=self.filters * self.dim_capsule,
kernel_size=self.kernel_size,
strides=self.strides,
padding=self.padding,
name='primarycap_conv2d')
def call(self, inputs):
output = self.conv1(inputs)
output = layers.Reshape(target_shape=[-1, self.dim_capsule], name='primarycap_reshape')(output)
return squash(output)
def compute_output_shape(self, input_shape):
space = input_shape[1:-1]
new_space = []
for i in range(len(space)):
new_dim = conv_utils.conv_output_length(
space[i],
self.kernel_size[i],
padding=self.padding,
stride=self.strides[i])
new_space.append(new_dim)
return (None, np.prod(new_space) * self.filters, self.dim_capsule)
def CapsuleNet(input_shape, n_class, num_routing):
"""
The whole capsule network for MNIST recognition.
"""
# (None, H, W, C)
x = Input(input_shape)
conv1 = Conv2D(filters=256, kernel_size=9, padding='valid', activation='relu', name='init_conv')(x)
# (None, num_capsules, capsule_dim)
prim_caps = PrimaryCapsules(filters=32, kernel_size=9, dim_capsule=8, padding='valid', strides=(2, 2))(conv1)
# (None, n_class, dim_vector)
digit_caps = DigiCaps(num_capsule=n_class, dim_capsule=16,
num_routing=num_routing, name='digitcaps')(prim_caps)
# (None, n_class)
pred = Length(name='out_caps')(digit_caps)
# (None, n_class)
y = Input(shape=(n_class, ))
# (None, n_class * dim_vector)
masked = Mask()([digit_caps, y])
x_recon = layers.Dense(512, activation='relu')(masked)
x_recon = layers.Dense(1024, activation='relu')(x_recon)
x_recon = layers.Dense(784, activation='sigmoid')(x_recon)
x_recon = layers.Reshape(target_shape=[28, 28, 1], name='out_recon')(x_recon)
# two-input-two-output keras Model
return Model([x, y], [pred, x_recon])
if __name__ == '__main__':
batch_size = 128
num_classes = 10
img_rows, img_cols = 28, 28
lam_recon = 0.392
mnist_data = np.load('data/mnist.npz')
x_train, y_train, x_test, y_test = mnist_data['x_train'], mnist_data['y_train'], \
mnist_data['x_test'], mnist_data['y_test']
x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
y_train = utils.to_categorical(y_train, num_classes)
y_test = utils.to_categorical(y_test, num_classes)
model = CapsuleNet((img_rows, img_cols, 1), num_classes, 3)
model.compile(loss=margin_loss,
optimizer='adam',
loss_weights=[1., lam_recon],
metrics=['accuracy'])
model.fit([x_train, y_train], [y_train, x_train],
batch_size=batch_size,
epochs=15,
validation_data=([x_test, y_test], [y_test, x_test]))