forked from mharizanov/AI-ipcam
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathai-ipcam.py
128 lines (109 loc) · 4.53 KB
/
ai-ipcam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
#!/usr/bin/env python
from darkflow.net.build import TFNet
import cv2
import os
import random
from subprocess import Popen
import time
from PIL import Image,ImageDraw
import numpy as np
import paho.mqtt.client as mqtt
import argparse
#In case Raspberry Pi camera is used instead of RTSP stream
import picamera
usepicamera = False
#RTSP captured frame frame_filename; preferably on RAM drive
#diskutil erasevolume HFS+ 'RAM Disk' `hdiutil attach -nomount ram://20480`
#frame_filename = '/Volumes/RAM Disk/frame'+str(random.randint(1,99999))+'.jpeg'
#Raspberry Pi
#sudo mkdir /tmp/ramdisk; sudo chmod 777 /tmp/ramdisk
#sudo mount -t tmpfs -o size=16M tmpfs /tmp/ramdisk/
frame_filename = '/tmp/ramdisk/frame'+str(random.randint(1,99999))+'.jpeg'
#threshold parameter is below, keeping it too low will result in recognition errors
options = {"model": "cfg/tiny-yolo.cfg", "load": "tiny-yolo.weights", "threshold": 0.55}
parser=argparse.ArgumentParser()
parser.add_argument(
"--watch", # name on the parser - drop the `--` for positional/required parameters
nargs="*", # 0 or more values expected => creates a list
type=str,
default=['person', 'cat', 'dog', 'bird'], # default if nothing is provided
)
parser.add_argument(
"--stream", # name on the parser - drop the `--` for positional/required parameters
type=str,
default= 'rtsp://192.168.1.192:554/onvif1', # default if nothing is provided
)
parser.add_argument(
"--broker", # name on the parser - drop the `--` for positional/required parameters
type=str,
default= '', # default if nothing is provided
)
parser.add_argument(
"--topic", # name on the parser - drop the `--` for positional/required parameters
type=str,
default= '', # default if nothing is provided
)
parser.add_argument(
"--showimage", # name on the parser - drop the `--` for positional/required parameters
type=str,
default='no', # default if nothing is provided
)
# parse the command line
args = parser.parse_args()
watch_list=args.watch
rtsp_stream=args.stream
broker_address=args.broker
mqtt_topic=args.topic
showimageflag=args.showimage
print("Watching for: %r" % watch_list)
print("Stream: %r" % rtsp_stream)
print("MQTT broker: %r" % broker_address)
print("MQTT topic: %r" % mqtt_topic)
print("Show image: %r" % showimageflag)
if usepicamera:
camera = picamera.PiCamera()
camera.resolution = (640, 480)
else:
#start a ffmpeg process that captures one frame every 2 seconds
p = Popen(['ffmpeg', '-loglevel', 'panic', '-rtsp_transport', 'udp', '-i', rtsp_stream, '-f' ,'image2' ,'-s', '640x480', '-pix_fmt', 'yuvj420p', '-r', '1/2' ,'-updatefirst', '1', frame_filename])
if broker_address!='':
client = mqtt.Client("cameraclient_"+str(random.randint(1,99999999))) #create new instance
client.connect(broker_address)
tfnet = TFNet(options)
while True:
try:
if usepicamera:
camera.capture( frame_filename )
curr_img = Image.open( frame_filename )
curr_img_cv2 = cv2.cvtColor(np.array(curr_img), cv2.COLOR_RGB2BGR) #is the frame good and can be opened?
curr_img_cv2 = cv2.resize(curr_img_cv2, (640, 480))
os.remove(frame_filename) #delete frame once it is processed, so we don't reprocess the same frame over
except: # ..frame not ready, just snooze for a bit
time.sleep(1)
continue
result = tfnet.return_predict(curr_img_cv2)
print(result)
if broker_address!='':
client.publish(mqtt_topic, "".join([str(x) for x in result]) ) #publish
saveflag=False
namestr=''
draw = ImageDraw.Draw(curr_img)
for det_object in result:
#if any(det_object['label'] in s for s in watch_list):
draw.rectangle([det_object['topleft']['x'], det_object['topleft']['y'],det_object['bottomright']['x'], det_object['bottomright']['y']], outline=(255, 255, 0))
draw.text([det_object['topleft']['x'], det_object['topleft']['y'] - 13], det_object['label']+' - ' + str( "{0:.0f}%".format(det_object['confidence'] * 100) ) , fill=(255, 255, 0))
saveflag=True
namestr+='_'+str(det_object['label'])
if saveflag == True:
#curr_img.save('images/'+str(int(time.time()))+namestr+'.jpg')
saveflag=False
if showimageflag!='no':
curr_img_cv2=cv2.cvtColor(np.array(curr_img), cv2.COLOR_RGB2BGR)
curr_img_cv2 = cv2.resize(curr_img_cv2, (640, 480))
cv2.imshow("Security Feed", curr_img_cv2)
if cv2.waitKey(50) & 0xFF == ord('q'): # wait for image render
break
continue
time.sleep(1)
p.terminate()
cv2.destroyAllWindows()