forked from ruogufang/pct
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Exp_PCNRs.m
383 lines (347 loc) · 16.3 KB
/
Exp_PCNRs.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
% Simulation Experiment on CBF estimation at various PCNR values
% Figure 6
% Ruogu Fang Revised 09/24/2013
%
% Advanced Multimedia Processing (AMP) Lab, Cornell University
clear; clc; close all;
% Set path
addpath(genpath('~/Dropbox/Research/pct')); % Include PCT package
addpath(genpath('toolbox')); % SPD toolbox
% Parameters
% PCNRs = zeros(6,4);
% PCNRs(:,1) = [2 5 7 10 20 30]'; % 1 or 0.2
PCNRs = 0.2;
lambda = 0.15; % bSVD truncation threshold
m = 2; % circulant number
CBV1 = 4; %ml/100g
CBV2 = 2; %ml/100g
CBF1 = 70; % ml/100g/min
CBF2 = 20; % ml/100g/min
X = 40; Y = 40; Z = 1; T = 60; % volumn size
alpha = 10; % transpose function h parameter
load acf;
% Step 1: Generate Artery Input Function (AIF)
t = (0 : T-1)';
t0 = 0;
a = 1;
b = 3;
c = 1.5;
AIF = pct_aif(t,t0,a,b,c);
% Step 2: Generate Impulse Residue Function RIF using Gamma Family
CBF_gt = zeros(X,Y);
CBF_gt(:,1:Y/2) = CBF1;
CBF_gt(:,Y/2+1:end) = CBF2;
MTT1 = CBV1 / CBF1 * 60; %sec (3 ~ 12 s)
beta1 = MTT1 / alpha;
RIF1 = pct_irf(t, alpha, beta1);
MTT2 = CBV2 / CBF2 * 60; %sec (3 ~ 12 s)
beta2 = MTT2 / alpha;
RIF2 = pct_irf(t, alpha, beta2);
RIF = zeros(T,X,Y);
RIF(:,:,1:Y/2) = repmat(RIF1,[1 X Y/2]);
RIF(:,:,Y/2+1:end) = repmat(RIF2,[1 X Y/2]);
MTT_gt = zeros(X,Y);
MTT_gt(:,1:Y/2) = MTT1;
MTT_gt(:,Y/2+1:end) = MTT2;
CBV_gt = zeros(X,Y);
CBV_gt(:,1:Y/2) = CBV1;
CBV_gt(:,Y/2+1:end) = CBV2;
% Step 3: Generate Tissue Time Enhancement Curve
TEC = pct_tec(AIF, RIF, CBF_gt);
TEC1 = pct_tec(AIF, RIF1,CBF1);
TEC2 = pct_tec(AIF, RIF2, CBF2);
TTP_gt = pct_ttp(TEC,1);
TTP1 = mean(mean(TTP_gt(:,1:Y/2)));
TTP2 = mean(mean(TTP_gt(:,Y/2+1:end)));
PCNRs(:,2) = PCNRs(:,1)/max(abs(CBF1-CBF2))*max(abs(CBV1-CBV2));
PCNRs(:,3) = PCNRs(:,1)/max(abs(CBF1-CBF2))*max(abs(MTT1-MTT2));
PCNRs(:,4) = PCNRs(:,1)/max(abs(CBF1-CBF2))*max(abs(TTP1-TTP2));
% Initialization
PCNR_sSVD = zeros(length(PCNRs),4);
PCNR_bSVD = zeros(length(PCNRs),4);
PCNR_TIPS_bSVD = zeros(length(PCNRs),4);
PCNR_tikh = zeros(length(PCNRs),4);
PCNR_SPD = zeros(length(PCNRs),4);
PCNR_TTV = zeros(length(PCNRs),4);
PCNR_TIPS_TTV = zeros(length(PCNRs),4);
for i = 1 : size(PCNRs,1)
PCNR = PCNRs(i,1);
% Step 4: Correlated Gaussian Noise Generation
% sigma = (max(TEC1(:)-TEC2(:))) / (10^(PCNR/20));
sigma = max(abs(CBF1-CBF2))/PCNR;
Cn = pct_noise(TEC, acf, sigma,'s');
% Method 1: Standard Truncated Singular Value Decomposition (sSVD)
RIF_sSVD = pct_ssvd(Cn,AIF,1,lambda,ones(X,Y));
CBF_sSVD = squeeze(max(RIF_sSVD));
MTT_sSVD = squeeze(sum(RIF_sSVD))./CBF_sSVD;
CBV_sSVD = squeeze(sum(RIF_sSVD))/60;
TTP_sSVD = pct_ttp(pct_tec(AIF,RIF_sSVD),1);
CBF1_sSVD = CBF_sSVD(:,1:Y/2);
CBF2_sSVD = CBF_sSVD(:,Y/2+1:end);
PCNR_sSVD(i,1) = max(abs(mean(mean(CBF_sSVD(:,1:Y/2)))-mean(mean(CBF_sSVD(:,Y/2+1:end)))))/sigma;
PCNR_sSVD(i,2) = max(abs(mean(mean(CBV_sSVD(:,1:Y/2)))-mean(mean(CBV_sSVD(:,Y/2+1:end)))))/sigma;
PCNR_sSVD(i,3) = max(abs(mean(mean(MTT_sSVD(:,1:Y/2)))-mean(mean(MTT_sSVD(:,Y/2+1:end)))))/sigma;
PCNR_sSVD(i,4) = max(abs(mean(mean(TTP_sSVD(:,1:Y/2)))-mean(mean(TTP_sSVD(:,Y/2+1:end)))))/sigma;
% Method 2: block-circulant SVD (bSVD)
RIF_bSVD = pct_bsvd(Cn,AIF,1,lambda,m,ones(X,Y));
CBF_bSVD = squeeze(max(RIF_bSVD));
MTT_bSVD = squeeze(sum(RIF_bSVD))./CBF_bSVD;
CBV_bSVD = squeeze(sum(RIF_bSVD))/60;
TTP_bSVD = pct_ttp(pct_tec(AIF,RIF_bSVD),1);
PCNR_bSVD(i,1) = max(abs(mean(mean(CBF_bSVD(:,1:Y/2)))-mean(mean(CBF_bSVD(:,Y/2+1:end)))))/sigma;
PCNR_bSVD(i,2) = max(abs(mean(mean(CBV_bSVD(:,1:Y/2)))-mean(mean(CBV_bSVD(:,Y/2+1:end)))))/sigma;
PCNR_bSVD(i,3) = max(abs(mean(mean(MTT_bSVD(:,1:Y/2)))-mean(mean(MTT_bSVD(:,Y/2+1:end)))))/sigma;
PCNR_bSVD(i,4) = max(abs(mean(mean(TTP_bSVD(:,1:Y/2)))-mean(mean(TTP_bSVD(:,Y/2+1:end)))))/sigma;
% Method 3: Tikhonov
RIF_tikh = pct_tikh(Cn,AIF,1,lambda,1,ones(X,Y));
CBF_tikh = squeeze(max(RIF_tikh));
MTT_tikh = squeeze(sum(RIF_tikh))./CBF_tikh;
CBV_tikh = squeeze(sum(RIF_tikh))/60;
TTP_tikh = pct_ttp(pct_tec(AIF,RIF_tikh),1);
PCNR_tikh(i,1) = max(abs(mean(mean(CBF_tikh(:,1:Y/2)))-mean(mean(CBF_tikh(:,Y/2+1:end)))))/sigma;
PCNR_tikh(i,2) = max(abs(mean(mean(CBV_tikh(:,1:Y/2)))-mean(mean(CBV_tikh(:,Y/2+1:end)))))/sigma;
PCNR_tikh(i,3) = max(abs(mean(mean(MTT_tikh(:,1:Y/2)))-mean(mean(MTT_tikh(:,Y/2+1:end)))))/sigma;
PCNR_tikh(i,4) = max(abs(mean(mean(TTP_tikh(:,1:Y/2)))-mean(mean(TTP_tikh(:,Y/2+1:end)))))/sigma;
% Parameters for TV-based Methods
Ca = pct_circ(AIF,[],[],1); % block-circulant version
input.A = Ca;
input.b = reshape(Cn,T,[]);
% Method 4: Sparse Perfusion Deconvolution (SPD)
% set parameters %
params.cbf0 = CBF_bSVD;
params.mtt0 = MTT_bSVD;
params.cbv0 = CBV_bSVD;
params.ttp0 = TTP_bSVD;
params.numThreads=2; % number of threads
params.K = 256; % dictionary size
params.sigma = sigma;
params.maxval = max(CBF_bSVD(:));
params.trainnum = 40000;
params.verbose = false;
% params.lambda = 10; % weight of the sparsity term in SPAMS package
params.mixture = 1; % weight of input signal
params.J = []; % initialize energy function
params.round = 2; % MAP rounds
params.C = Cn;
params.AIF = AIF;
params.R = RIF_bSVD;
params.verbose = false;
params.rho = 1.05;
params.m = m;
params.beta = 1; % weight of prior
params.blocksize = 6;
overlap = 5; % patch overlap
params.stepsize = params.blocksize - overlap;
% %Load pre-trained dictionary
load D_ODL_6x6.mat
params.D = dict;
% Online deconvolution
[CBF_SPD, MTT_SPD, CBV_SPD, TTP_SPD] = spd(params);
PCNR_SPD(i,1) = max(abs(mean(mean(CBF_SPD(:,1:Y/2)))-mean(mean(CBF_SPD(:,Y/2+1:end)))))/sigma;
PCNR_SPD(i,2) = max(abs(mean(mean(CBV_SPD(:,1:Y/2)))-mean(mean(CBV_SPD(:,Y/2+1:end)))))/sigma;
PCNR_SPD(i,3) = max(abs(mean(mean(MTT_SPD(:,1:Y/2)))-mean(mean(MTT_SPD(:,Y/2+1:end)))))/sigma;
PCNR_SPD(i,4) = max(abs(mean(mean(TTP_SPD(:,1:Y/2)))-mean(mean(TTP_SPD(:,Y/2+1:end)))))/sigma;
% Method 5: Time-Intensity Profile Similarity (TIPS) bilateral filtering
w = 5; % bilateral filter half-width
sigma_tips = [5 sigma]; % bilateral filter standard deviations
Cn_TIPS = permute(pct_tips(permute(Cn,[2 3 1]),w,sigma_tips),[3 1 2]);
RIF_TIPS_bSVD = pct_bsvd(Cn_TIPS,AIF,1,lambda,m,ones(X,Y));
CBF_TIPS_bSVD = squeeze(max(RIF_TIPS_bSVD));
MTT_TIPS_bSVD = squeeze(sum(RIF_TIPS_bSVD))./CBF_TIPS_bSVD;
CBV_TIPS_bSVD = squeeze(sum(RIF_TIPS_bSVD))/60;
TTP_TIPS_bSVD = pct_ttp(pct_tec(AIF,RIF_TIPS_bSVD),1);
PCNR_TIPS_bSVD(i,1) = max(abs(mean(mean(CBF_TIPS_bSVD(:,1:Y/2)))-mean(mean(CBF_TIPS_bSVD(:,Y/2+1:end)))))/sigma;
PCNR_TIPS_bSVD(i,2) = max(abs(mean(mean(CBV_TIPS_bSVD(:,1:Y/2)))-mean(mean(CBV_TIPS_bSVD(:,Y/2+1:end)))))/sigma;
PCNR_TIPS_bSVD(i,3) = max(abs(mean(mean(MTT_TIPS_bSVD(:,1:Y/2)))-mean(mean(MTT_TIPS_bSVD(:,Y/2+1:end)))))/sigma;
PCNR_TIPS_bSVD(i,4) = max(abs(mean(mean(TTP_TIPS_bSVD(:,1:Y/2)))-mean(mean(TTP_TIPS_bSVD(:,Y/2+1:end)))))/sigma;
% Method 6: Tensor Total Variation on RIF (TTV)
% Parameters for TV-based Methods
% input.reg = [2 0.5]; % TV weight for PCNR = 1 [2 0.5]
input.reg = [10 2.5]; % TV weight for PCNR=0.2 [10 1]
input.n1=X;input.n2=Y; input.nt = T;
input.maxitr=500;
input.L=1;input.num=1;
input.l=0; input.u=inf;
input.no = 10;
input.tt = T;
% input.dim = [T X Y];
Ca = pct_circ(AIF,[],[],1); % block-circulant version
input.A = Ca;
input.b = reshape(Cn,T,[]);
out = TTV_FCSA(input);
RIF_TTV = reshape(out.y,[T,X,Y]);
% [RIF_TTV,funv] = mrp_ttv(input);
CBF_TTV = squeeze(max(RIF_TTV));
MTT_TTV = squeeze(sum(RIF_TTV))./CBF_TTV;
CBV_TTV = squeeze(sum(RIF_TTV))/60;
TTP_TTV = pct_ttp(pct_tec(AIF,RIF_TTV),1);
PCNR_TTV(i,1) = max(abs(mean(CBF_TTV(:,1:Y/2))-mean(CBF_TTV(:,Y/2+1:end))))/sigma;
PCNR_TTV(i,2) = max(abs(mean(CBV_TTV(:,1:Y/2))-mean(CBV_TTV(:,Y/2+1:end))))/sigma;
PCNR_TTV(i,3) = max(abs(mean(MTT_TTV(:,1:Y/2))-mean(MTT_TTV(:,Y/2+1:end))))/sigma;
PCNR_TTV(i,4) = max(abs(mean(TTP_TTV(:,1:Y/2))-mean(TTP_TTV(:,Y/2+1:end))))/sigma;
% TIPS + TTV
input.b = reshape(Cn_TIPS,T,[]);
out = TTV_FCSA(input);
RIF_TIPS_TTV = reshape(out.y,[T,X,Y]);
% [RIF_TIPS_TTV,funv] = mrp_ttv(input);
CBF_TIPS_TTV = squeeze(max(RIF_TIPS_TTV));
MTT_TIPS_TTV = squeeze(sum(RIF_TIPS_TTV))./CBF_TIPS_TTV;
CBV_TIPS_TTV = squeeze(sum(RIF_TIPS_TTV))/60;
TTP_TIPS_TTV = pct_ttp(pct_tec(AIF,RIF_TIPS_TTV),1);
PCNR_TIPS_TTV(i,1) = max(abs(mean(mean(CBF_TIPS_TTV(:,1:Y/2)))-mean(mean(CBF_TIPS_TTV(:,Y/2+1:end)))))/sigma;
PCNR_TIPS_TTV(i,2) = max(abs(mean(mean(CBV_TIPS_TTV(:,1:Y/2)))-mean(mean(CBV_TIPS_TTV(:,Y/2+1:end)))))/sigma;
PCNR_TIPS_TTV(i,3) = max(abs(mean(mean(MTT_TIPS_TTV(:,1:Y/2)))-mean(mean(MTT_TIPS_TTV(:,Y/2+1:end)))))/sigma;
PCNR_TIPS_TTV(i,4) = max(abs(mean(mean(TTP_TIPS_TTV(:,1:Y/2)))-mean(mean(TTP_TIPS_TTV(:,Y/2+1:end)))))/sigma;
end
%% Show results
fs = 20;
figure;
cbf_max = 100;
subplot(491); imshow(CBF_gt,[0 cbf_max]); set(gca,'FontSize',fs); title('Reference');
text(-fs,fs,'CBF','FontSize',fs);
subplot(492); imshow(CBF_sSVD,[0 cbf_max]); set(gca,'FontSize',fs); title('sSVD');
subplot(493); imshow(CBF_bSVD,[0 cbf_max]); set(gca,'FontSize',fs); title('bSVD');
subplot(494); imshow(CBF_TIPS_bSVD,[0 cbf_max]); set(gca,'FontSize',fs); title('TIPS+bSVD');
subplot(495); imshow(CBF_tikh,[0 cbf_max]); set(gca,'FontSize',fs); title('Tikhonov');
subplot(496); imshow(CBF_SPD,[0 cbf_max]); set(gca,'FontSize',fs); title('SPD');
subplot(497); imshow(CBF_TTV,[0 cbf_max]); set(gca,'FontSize',fs); title('TTV');
subplot(498); imshow(CBF_TIPS_TTV,[0 cbf_max]); set(gca,'FontSize',fs); title('TIPS+TTV');
subplot(499); imshow([],[0 cbf_max]);
c=colorbar; set(gca,'FontSize',fs);
x1=get(gca,'position');
x=get(c,'Position');
x(1)=x1(1);x(2)=x1(2);x(3)=0.015;x(4)=0.15;
set(c,'Position',x)
set(gca,'position',x1)
cbv_max = 10;
subplot(4,9,10); imshow(CBV_gt,[0 cbv_max]);
text(-20,20,'CBV','FontSize',20);
subplot(4,9,11); imshow(CBV_sSVD,[0 cbv_max]);
subplot(4,9,12); imshow(CBV_bSVD,[0 cbv_max]);
subplot(4,9,13); imshow(CBV_TIPS_bSVD,[0 cbv_max]);
subplot(4,9,14); imshow(CBV_tikh,[0 cbv_max]);
subplot(4,9,15); imshow(CBV_SPD,[0 cbv_max]);
subplot(4,9,16); imshow(CBV_TTV,[0 cbv_max]);
subplot(4,9,17); imshow(CBV_TIPS_TTV,[0 cbv_max]);
subplot(4,9,18); imshow([],[0 cbv_max]);
c=colorbar; set(gca,'FontSize',fs);
x1=get(gca,'position');
x=get(c,'Position');
x(1)=x1(1);x(2)=x1(2);x(3)=0.015;x(4)=0.15;
set(c,'Position',x);
set(gca,'position',x1);
mtt_max = 8;
subplot(4,9,19); imshow(MTT_gt,[0 mtt_max]);
text(-20,20,'MTT','FontSize',20);
subplot(4,9,20); imshow(MTT_sSVD,[0 mtt_max]);
subplot(4,9,21); imshow(MTT_bSVD,[0 mtt_max]);
subplot(4,9,22); imshow(MTT_TIPS_bSVD,[0 mtt_max]);
subplot(4,9,23); imshow(MTT_tikh,[0 mtt_max]);
subplot(4,9,24); imshow(MTT_SPD,[0 mtt_max]);
subplot(4,9,25); imshow(MTT_TTV,[0 mtt_max]);
subplot(4,9,26); imshow(MTT_TIPS_TTV,[0 mtt_max]);
subplot(4,9,27); imshow([],[0 mtt_max]);
c=colorbar; set(gca,'FontSize',fs);
x1=get(gca,'position');
x=get(c,'Position');
x(1)=x1(1);x(2)=x1(2);x(3)=0.015;x(4)=0.15;
set(c,'Position',x);
set(gca,'position',x1);
ttp_range = [0 20];
subplot(4,9,28); imshow(TTP_gt,ttp_range);
text(-20,20,'TTP','FontSize',20);
subplot(4,9,29); imshow(TTP_sSVD,ttp_range);
subplot(4,9,30); imshow(TTP_bSVD,ttp_range);
subplot(4,9,31); imshow(TTP_TIPS_bSVD,ttp_range);
subplot(4,9,32); imshow(TTP_tikh,ttp_range);
subplot(4,9,33); imshow(TTP_SPD,ttp_range);
subplot(4,9,34); imshow(TTP_TTV,ttp_range);
subplot(4,9,35); imshow(TTP_TIPS_TTV,ttp_range);
subplot(4,9,36); imshow([],ttp_range);
c=colorbar; set(gca,'FontSize',fs);
x1=get(gca,'position');
x=get(c,'Position');
x(1)=x1(1);x(2)=x1(2);x(3)=0.015;x(4)=0.15;
set(c,'Position',x);
set(gca,'position',x1);
% Save figures
figpath = '../../../Figures/';
w = 25; h = 10;
set(gcf, 'papersize', [w h]);
set(gcf, 'paperposition', [0 0 w h]);
print(gcf,fullfile(figpath,'pdf',['pcnr_' num2str(PCNR) '.pdf']),'-dpdf');
saveas(gcf,fullfile(figpath,'fig',['pcnr_' num2str(PCNR) '.fig']));
% %% Plot Estiamted PCNR vs True PCNR
% fs = 30; % font size for x and y axises
% lw = 4;
% ms = 10;
% spec = {'+-b','d--k','vc','o-.g','.-.m','s-r','^y'};
%
% % CBF
% h1 = figure;
% line(0:PCNRs(end),0:PCNRs(end),'Color',[0.5 0.5 0.5],'LineWidth',5);
% set(gca,'XTick',0:5:30); xlim([0 max(PCNRs(:,1))]);
% hold on;
% plot(PCNRs(:,1),PCNR_sSVD(:,1), spec{1},'MarkerSize',ms,'MarkerFaceColor',spec{1}(end),'LineWidth',lw);
% plot(PCNRs(:,1),PCNR_bSVD(:,1), spec{2},'MarkerSize',ms,'MarkerFaceColor',spec{2}(end),'LineWidth',lw);
% plot(PCNRs(:,1),PCNR_TIPS_bSVD(:,1), spec{3},'MarkerSize',ms,'MarkerFaceColor',spec{3}(end),'LineWidth',lw);
% plot(PCNRs(:,1),PCNR_tikh(:,1), spec{4},'MarkerSize',ms,'MarkerFaceColor',spec{4}(end),'LineWidth',lw);
% plot(PCNRs(:,1),PCNR_SPD(:,1), spec{5},'MarkerSize',ms,'MarkerFaceColor',spec{5}(end),'LineWidth',lw);
% plot(PCNRs(:,1),PCNR_TTV(:,1), spec{6},'MarkerSize',ms,'MarkerFaceColor',spec{6}(end),'LineWidth',lw);
% plot(PCNRs(:,1),PCNR_TIPS_TTV(:,1), spec{7},'MarkerSize',ms,'MarkerFaceColor',spec{7}(end),'LineWidth',lw);
% set(gca,'FontSize',fs);
% xlabel('True PCNR');
% ylabel('Estimated PCNR');
% legend('Reference','sSVD','bSVD','TIPS+bSVD','Tikhonov','SPD','TTV','TIPS+TTV','Location','NorthWest');
%
% % CBV
% h2 = figure;
% line(0:PCNRs(end),0:PCNRs(end),'Color',[0.5 0.5 0.5],'LineWidth',5);
% set(gca,'XTick',0:5:30); xlim([0 max(PCNRs(:,2))]);
% hold on;
% plot(PCNRs(:,2),PCNR_sSVD(:,2), spec{1},'MarkerSize',ms,'MarkerFaceColor',spec{1}(end),'LineWidth',lw);
% plot(PCNRs(:,2),PCNR_bSVD(:,2), spec{2},'MarkerSize',ms,'MarkerFaceColor',spec{2}(end),'LineWidth',lw);
% plot(PCNRs(:,2),PCNR_TIPS_bSVD(:,2), spec{3},'MarkerSize',ms,'MarkerFaceColor',spec{3}(end),'LineWidth',lw);
% plot(PCNRs(:,2),PCNR_tikh(:,2), spec{4},'MarkerSize',ms,'MarkerFaceColor',spec{4}(end),'LineWidth',lw);
% plot(PCNRs(:,2),PCNR_SPD(:,2), spec{5},'MarkerSize',ms,'MarkerFaceColor',spec{5}(end),'LineWidth',lw);
% plot(PCNRs(:,2),PCNR_TTV(:,2), spec{6},'MarkerSize',ms,'MarkerFaceColor',spec{6}(end),'LineWidth',lw);
% plot(PCNRs(:,2),PCNR_TIPS_TTV(:,2), spec{7},'MarkerSize',ms,'MarkerFaceColor',spec{7}(end),'LineWidth',lw);
% set(gca,'FontSize',fs);
% xlabel('True PCNR');
% ylabel('Estimated PCNR');
% legend('Reference','sSVD','bSVD','TIPS+bSVD','Tikhonov','SPD','TTV','TIPS+TTV','Location','NorthWest');
%
%
% h3 = figure;
% line(0:PCNRs(end),0:PCNRs(end),'Color',[0.5 0.5 0.5],'LineWidth',5);
% set(gca,'XTick',0:5:30); xlim([0 max(PCNRs(:,3))]);
% hold on;
% plot(PCNRs(:,3),PCNR_sSVD(:,3), spec{1},'MarkerSize',ms,'MarkerFaceColor',spec{1}(end),'LineWidth',lw);
% plot(PCNRs(:,3),PCNR_bSVD(:,3), spec{2},'MarkerSize',ms,'MarkerFaceColor',spec{2}(end),'LineWidth',lw);
% plot(PCNRs(:,3),PCNR_TIPS_bSVD(:,3), spec{3},'MarkerSize',ms,'MarkerFaceColor',spec{3}(end),'LineWidth',lw);
% plot(PCNRs(:,3),PCNR_tikh(:,3), spec{4},'MarkerSize',ms,'MarkerFaceColor',spec{4}(end),'LineWidth',lw);
% plot(PCNRs(:,3),PCNR_SPD(:,3), spec{5},'MarkerSize',ms,'MarkerFaceColor',spec{5}(end),'LineWidth',lw);
% plot(PCNRs(:,3),PCNR_TTV(:,3), spec{6},'MarkerSize',ms,'MarkerFaceColor',spec{6}(end),'LineWidth',lw);
% plot(PCNRs(:,3),PCNR_TIPS_TTV(:,3), spec{7},'MarkerSize',ms,'MarkerFaceColor',spec{7}(end),'LineWidth',lw);
% set(gca,'FontSize',fs);
% xlabel('True PCNR');
% ylabel('Estimated PCNR');
% legend('Reference','sSVD','bSVD','TIPS+bSVD','Tikhonov','SPD','TTV','TIPS+TTV','Location','NorthWest');
%
%
% h1 = figure;
% line(0:PCNRs(end),0:PCNRs(end),'Color',[0.5 0.5 0.5],'LineWidth',5);
% set(gca,'XTick',0:5:30); xlim([0 max(PCNRs(:,4))]);
% hold on;
% plot(PCNRs(:,4),PCNR_sSVD(:,4), spec{1},'MarkerSize',ms,'MarkerFaceColor',spec{1}(end),'LineWidth',lw);
% plot(PCNRs(:,4),PCNR_bSVD(:,4), spec{2},'MarkerSize',ms,'MarkerFaceColor',spec{2}(end),'LineWidth',lw);
% plot(PCNRs(:,4),PCNR_TIPS_bSVD(:,4), spec{3},'MarkerSize',ms,'MarkerFaceColor',spec{3}(end),'LineWidth',lw);
% plot(PCNRs(:,4),PCNR_tikh(:,4), spec{4},'MarkerSize',ms,'MarkerFaceColor',spec{4}(end),'LineWidth',lw);
% plot(PCNRs(:,4),PCNR_SPD(:,4), spec{5},'MarkerSize',ms,'MarkerFaceColor',spec{5}(end),'LineWidth',lw);
% plot(PCNRs(:,4),PCNR_TTV(:,4), spec{6},'MarkerSize',ms,'MarkerFaceColor',spec{6}(end),'LineWidth',lw);
% plot(PCNRs(:,4),PCNR_TIPS_TTV(:,4), spec{7},'MarkerSize',ms,'MarkerFaceColor',spec{7}(end),'LineWidth',lw);
% set(gca,'FontSize',fs);
% xlabel('True PCNR');
% ylabel('Estimated PCNR');
% legend('Reference','sSVD','bSVD','TIPS+bSVD','Tikhonov','SPD','TTV','TIPS+TTV','Location','NorthWest');
%