Skip to content

Latest commit

 

History

History
47 lines (35 loc) · 2.63 KB

README.md

File metadata and controls

47 lines (35 loc) · 2.63 KB

Simple Sparse PointCloud Example

This demo requires Bottlenose Stereo, it will not work with Bottlenose Mono.

This example assumes that:

The Python script shows how to:

  • set keypoint parameters, only FAST is shown, but can be adapted for GFTT.
  • set keypoint matching parameters
  • enable chunk data transmission for sparse point cloud

Output

The script will display the feature points that are detected in the left image that also have valid 3d correspondences. Each valid frame will yield a ply and png files that can be viewed with a 3D viewer such as MeshLab. For example,

python demo.py --mac <mac> --offsety1 <offset_from_calibration>

Setup

Set the following arguments to the demo.py file to change demo behavior.

Parameter Description
--mac (optional) The MAC address of the camera. Assumes the first available camera if not specified.
--max_keypoints (optional) Maximum number of keypoints to detect. Default 1000.
--fast_threshold (optional) Keypoint threshold for the Fast9 algorithm. Default 4.
--match_xoffset (optional) Matcher horizontal search range. Default 0 (use existing value)
--match_yoffset (optional) Matcher vertical search range. Default 0 (use existing value)
--offsety1 (optional) The Y offset of the right image. Default 440.
--min_threshold (optional) Minimum threshold to accept a matched keypoint. Default 40.
--ratio_threshold (optional) Ratio threshold. Default 1023

Usage

python demo.py <parameters>

Back to Samples