forked from PJLab-ADG/nr3d_lib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlogger.py
223 lines (189 loc) · 8.68 KB
/
logger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
"""
@file logger.py
@author Jianfei Guo, Shanghai AI Lab
@brief A general file & tensorboard logger modified from https://github.com/LMescheder/GAN_stability/blob/master/gan_training/logger.py
"""
import os
import pickle
import imageio
import torchvision
import numpy as np
from math import prod
from numbers import Number
from typing import List, Literal, Optional, Union
import torch
import torch.nn as nn
import torch.distributed as dist
from nr3d_lib.fmt import log
from nr3d_lib.plot import figure_to_image
from nr3d_lib.utils import cond_mkdir, is_scalar, nested_dict_items, tensor_statistics
try:
# NOTE: Since torch 1.2
from torch.utils.tensorboard import SummaryWriter
# from tensorboardX import SummaryWriter
except ImportError:
log.warning("tensorboard is not installed.")
try:
open3d_enabled = True
from open3d.visualization.tensorboard_plugin import summary
from open3d.visualization.tensorboard_plugin.util import to_dict_batch
except:
open3d_enabled = False
log.info("Unable to load open3d's plugin for tensorboard.")
#---------------------------------------------------------------------------
#---------------------- tensorboard / image recorder -----------------------
#---------------------------------------------------------------------------
class Logger(object):
# https://github.com/LMescheder/GAN_stability/blob/master/gan_training/logger.py
def __init__(
self,
log_dir: str, img_dir: str=None, enable_3d = False,
monitoring: Literal['tensorboard']=None, monitoring_dir: Optional[str]=None,
rank=0, is_master=True, multi_process_logging=False):
self.stats = dict()
self.log_dir = log_dir
self.img_dir = img_dir
self.save_imgs = self.img_dir is not None
self.enable_3d = enable_3d
self.rank = rank
self.is_master = is_master
self.multi_process_logging = multi_process_logging
if self.is_master:
cond_mkdir(self.log_dir)
if self.save_imgs:
cond_mkdir(self.img_dir)
if self.multi_process_logging:
dist.barrier()
self.monitoring = None
self.monitoring_dir = None
self.last_step = None
# if self.is_master:
# NOTE: For now, we are allowing tensorboard writting on all child processes,
# as it's already nicely supported,
# and the data of different events file of different processes will be automatically aggregated when visualizing.
# https://discuss.pytorch.org/t/using-tensorboard-with-distributeddataparallel/102555/7
if not (monitoring is None or monitoring == 'none'):
self.setup_monitoring(monitoring, monitoring_dir)
def setup_monitoring(self, monitoring: Literal['tensorboard'], monitoring_dir: str):
self.monitoring = monitoring
self.monitoring_dir = monitoring_dir if monitoring_dir is not None else os.path.join(self.log_dir, 'events')
if monitoring == 'tensorboard':
self.tb = SummaryWriter(self.monitoring_dir)
else:
raise NotImplementedError(f'Monitoring tool "{monitoring}" not supported!')
def add(self, category: str, k: str, v: Number, it: int):
self.last_step = it
if category not in self.stats:
self.stats[category] = {}
if k not in self.stats[category]:
self.stats[category][k] = []
self.stats[category][k].append((it, v))
k_name = '/'.join([category, k])
if self.monitoring == 'telemetry':
self.tm.metric_push_async({
'metric': k_name, 'value': v, 'it': it
})
elif self.monitoring == 'tensorboard':
self.tb.add_scalar(k_name, v, it)
def add_vector(self, category: str, k: str, vec, it: int):
self.last_step = it
if category not in self.stats:
self.stats[category] = {}
if k not in self.stats[category]:
self.stats[category][k] = []
if isinstance(vec, torch.Tensor):
vec = vec.data.clone().cpu().numpy()
self.stats[category][k].append((it, vec))
def add_imgs(self, imgs: Union[np.ndarray, torch.Tensor], class_name: str, it: int):
self.last_step = it
outdir = os.path.join(self.img_dir, class_name)
if not os.path.exists(outdir):
os.makedirs(outdir, exist_ok=True)
if self.multi_process_logging:
dist.barrier()
outfile = os.path.join(outdir, f'{it:08d}_{self.rank}.png')
if self.save_imgs:
if isinstance(imgs, np.ndarray):
imageio.imwrite(outfile, imgs)
else:
# imgs = imgs / 2 + 0.5
imgs = torchvision.utils.make_grid(imgs)
torchvision.utils.save_image(imgs.clone(), outfile, nrow=8)
dataformats = 'HWC' if isinstance(imgs, np.ndarray) else 'CHW'
if self.monitoring == 'tensorboard':
self.tb.add_image(class_name, imgs, global_step=it, dataformats=dataformats)
def add_figure(self, fig, class_name: str, it: int):
self.last_step = it
if self.save_imgs:
outdir = os.path.join(self.img_dir, class_name)
if self.is_master and not os.path.exists(outdir):
os.makedirs(outdir)
if self.multi_process_logging:
dist.barrier()
outfile = os.path.join(outdir, f'{it:08d}_{self.rank}.png')
image_hwc = figure_to_image(fig)
imageio.imwrite(outfile, image_hwc)
if self.monitoring == 'tensorboard':
if len(image_hwc.shape) == 3:
image_hwc = np.array(image_hwc[None, ...])
self.tb.add_images(class_name, torch.from_numpy(image_hwc), dataformats='NHWC', global_step=it)
else:
if self.monitoring == 'tensorboard':
self.tb.add_figure(class_name, fig, it)
def add_module_param(self, module_name: str, module: nn.Module, it: int):
self.last_step = it
if self.monitoring == 'tensorboard':
for name, param in module.named_parameters():
self.tb.add_histogram(f"{module_name}/{name}", param.detach(), it)
def add_text(self, category: str, k: str, text, it: int):
self.last_step = it
if self.monitoring == 'tensorboard':
self.tb.add_text(f"{category}/{k}", text, it)
def add_nested_dict(self, category: str, prefix: str, d: dict, it: int, metrics: List[str] = None):
self.last_step = it
for *k, v in nested_dict_items(d):
if hasattr(v, 'shape') and prod(v.shape) > 1:
for _k, _v in tensor_statistics(v, metrics=metrics).items():
key = '.'.join(k + [_k])
self.add(category, prefix + key, _v, it)
elif is_scalar(v):
key = '.'.join(k)
self.add(category, prefix + key, v, it)
def add_3d(self, category: str, k: str, o3d_geo_list: List, it: int):
self.last_step = it
k_name = '/'.join([category, k])
if open3d_enabled and self.monitoring == 'tensorboard':
if not isinstance(o3d_geo_list, list):
o3d_geo_list = [o3d_geo_list]
self.tb.add_3d(k_name, to_dict_batch(o3d_geo_list), step=it)
def add_mesh(self, category: str, k: str, verts: torch.Tensor, *, faces: torch.Tensor = None, colors: torch.Tensor = None, it: int = ...):
self.last_step = it
k_name = '/'.join([category, k])
if self.monitoring == 'tensorboard':
if verts.dim() == 2:
verts = verts.unsqueeze(0)
if faces.dim() == 2:
faces = faces.unsqueeze(0)
self.tb.add_mesh(k_name, vertices=verts, colors=colors, faces=faces, global_step=it)
def get_last(self, category: str, k: str, default=0.):
if category not in self.stats:
return default
elif k not in self.stats[category]:
return default
else:
return self.stats[category][k][-1][1]
def save_stats(self, filename: str):
filename = os.path.join(self.log_dir, filename + f'_{self.rank}')
with open(filename, 'wb') as f:
pickle.dump(self.stats, f)
def load_stats(self, filename: str):
filename = os.path.join(self.log_dir, filename + f'_{self.rank}')
if not os.path.exists(filename):
# log.info(f"=> Not exist: {filename}, will create new after calling save_stats()")
return
try:
with open(filename, 'rb') as f:
self.stats = pickle.load(f)
log.info(f"=> Load file: {filename}")
except EOFError:
log.info('Warning: log file corrupted!')