|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "A replica of this keras blog [Reference](https://blog.keras.io/keras-as-a-simplified-interface-to-tensorflow-tutorial.html)\n", |
| 8 | + "\n" |
| 9 | + ] |
| 10 | + }, |
| 11 | + { |
| 12 | + "cell_type": "code", |
| 13 | + "execution_count": null, |
| 14 | + "metadata": {}, |
| 15 | + "outputs": [], |
| 16 | + "source": [] |
| 17 | + }, |
| 18 | + { |
| 19 | + "cell_type": "markdown", |
| 20 | + "metadata": {}, |
| 21 | + "source": [ |
| 22 | + "We should start by creating a TensorFlow session and registering it with Keras. This means that Keras will use the session we registered to initialize all variables that it creates internally." |
| 23 | + ] |
| 24 | + }, |
| 25 | + { |
| 26 | + "cell_type": "code", |
| 27 | + "execution_count": null, |
| 28 | + "metadata": {}, |
| 29 | + "outputs": [], |
| 30 | + "source": [ |
| 31 | + "import tensorflow as tf\n", |
| 32 | + "sess = tf.Session()\n", |
| 33 | + "\n", |
| 34 | + "from keras import backend as K\n", |
| 35 | + "K.set_session(sess)" |
| 36 | + ] |
| 37 | + }, |
| 38 | + { |
| 39 | + "cell_type": "markdown", |
| 40 | + "metadata": {}, |
| 41 | + "source": [ |
| 42 | + "Now let's get started with our MNIST model. We can start building a classifier exactly as you would do in TensorFlow:\n", |
| 43 | + "\n" |
| 44 | + ] |
| 45 | + }, |
| 46 | + { |
| 47 | + "cell_type": "code", |
| 48 | + "execution_count": null, |
| 49 | + "metadata": {}, |
| 50 | + "outputs": [], |
| 51 | + "source": [ |
| 52 | + "# this placeholder will contain our input digits, as flat vectors\n", |
| 53 | + "img = tf.placeholder(tf.float32, shape=(None, 784))" |
| 54 | + ] |
| 55 | + }, |
| 56 | + { |
| 57 | + "cell_type": "markdown", |
| 58 | + "metadata": {}, |
| 59 | + "source": [ |
| 60 | + "We can then use Keras layers to speed up the model definition process:\n", |
| 61 | + "\n" |
| 62 | + ] |
| 63 | + }, |
| 64 | + { |
| 65 | + "cell_type": "code", |
| 66 | + "execution_count": null, |
| 67 | + "metadata": {}, |
| 68 | + "outputs": [], |
| 69 | + "source": [ |
| 70 | + "from keras.layers import Dense\n", |
| 71 | + "\n", |
| 72 | + "# Keras layers can be called on TensorFlow tensors:\n", |
| 73 | + "x = Dense(128, activation='relu')(img) # fully-connected layer with 128 units and ReLU activation\n", |
| 74 | + "x = Dense(128, activation='relu')(x)\n", |
| 75 | + "preds = Dense(10, activation='softmax')(x) # output layer with 10 units and a softmax activation" |
| 76 | + ] |
| 77 | + }, |
| 78 | + { |
| 79 | + "cell_type": "markdown", |
| 80 | + "metadata": {}, |
| 81 | + "source": [ |
| 82 | + "We define the placeholder for the labels, and the loss function we will use:\n", |
| 83 | + "\n" |
| 84 | + ] |
| 85 | + }, |
| 86 | + { |
| 87 | + "cell_type": "code", |
| 88 | + "execution_count": null, |
| 89 | + "metadata": {}, |
| 90 | + "outputs": [], |
| 91 | + "source": [ |
| 92 | + "labels = tf.placeholder(tf.float32, shape=(None, 10))\n", |
| 93 | + "\n", |
| 94 | + "from keras.objectives import categorical_crossentropy\n", |
| 95 | + "loss = tf.reduce_mean(categorical_crossentropy(labels, preds))" |
| 96 | + ] |
| 97 | + }, |
| 98 | + { |
| 99 | + "cell_type": "markdown", |
| 100 | + "metadata": {}, |
| 101 | + "source": [ |
| 102 | + "Let's train the model with a TensorFlow optimizer:\n", |
| 103 | + "\n" |
| 104 | + ] |
| 105 | + }, |
| 106 | + { |
| 107 | + "cell_type": "code", |
| 108 | + "execution_count": null, |
| 109 | + "metadata": {}, |
| 110 | + "outputs": [], |
| 111 | + "source": [ |
| 112 | + "from tensorflow.examples.tutorials.mnist import input_data\n", |
| 113 | + "mnist_data = input_data.read_data_sets('MNIST_data', one_hot=True)\n", |
| 114 | + "\n", |
| 115 | + "train_step = tf.train.GradientDescentOptimizer(0.5).minimize(loss)\n", |
| 116 | + "\n", |
| 117 | + "# Initialize all variables\n", |
| 118 | + "init_op = tf.global_variables_initializer()\n", |
| 119 | + "sess.run(init_op)\n", |
| 120 | + "\n", |
| 121 | + "# Run training loop\n", |
| 122 | + "with sess.as_default():\n", |
| 123 | + " for i in range(100):\n", |
| 124 | + " batch = mnist_data.train.next_batch(50)\n", |
| 125 | + " train_step.run(feed_dict={img: batch[0],\n", |
| 126 | + " labels: batch[1]})" |
| 127 | + ] |
| 128 | + }, |
| 129 | + { |
| 130 | + "cell_type": "markdown", |
| 131 | + "metadata": {}, |
| 132 | + "source": [ |
| 133 | + "We can now evaluate the model:\n", |
| 134 | + "\n" |
| 135 | + ] |
| 136 | + }, |
| 137 | + { |
| 138 | + "cell_type": "code", |
| 139 | + "execution_count": null, |
| 140 | + "metadata": {}, |
| 141 | + "outputs": [], |
| 142 | + "source": [ |
| 143 | + "from keras.metrics import categorical_accuracy as accuracy\n", |
| 144 | + "\n", |
| 145 | + "acc_value = accuracy(labels, preds)\n", |
| 146 | + "with sess.as_default():\n", |
| 147 | + " print(acc_value.eval(feed_dict={img: mnist_data.test.images,\n", |
| 148 | + " labels: mnist_data.test.labels}))" |
| 149 | + ] |
| 150 | + }, |
| 151 | + { |
| 152 | + "cell_type": "markdown", |
| 153 | + "metadata": {}, |
| 154 | + "source": [ |
| 155 | + "## Different behaviors during training and testing\n" |
| 156 | + ] |
| 157 | + }, |
| 158 | + { |
| 159 | + "cell_type": "markdown", |
| 160 | + "metadata": {}, |
| 161 | + "source": [ |
| 162 | + "Some Keras layers (e.g. Dropout, BatchNormalization) behave differently at training time and testing time. You can tell whether a layer uses the \"learning phase\" (train/test) by printing layer.uses_learning_phase, a boolean: \n", |
| 163 | + "* True if the layer has a different behavior in training mode and test mode\n", |
| 164 | + "* False otherwise.\n", |
| 165 | + "\n", |
| 166 | + "If your model includes such layers, then you need to specify the value of the learning phase as part of feed_dict, so that your model knows whether to apply dropout/etc or not.\n", |
| 167 | + "\n", |
| 168 | + "The Keras learning phase (a scalar TensorFlow tensor) is accessible via the Keras backend:" |
| 169 | + ] |
| 170 | + }, |
| 171 | + { |
| 172 | + "cell_type": "code", |
| 173 | + "execution_count": null, |
| 174 | + "metadata": {}, |
| 175 | + "outputs": [], |
| 176 | + "source": [ |
| 177 | + "from keras import backend as K\n", |
| 178 | + "print(K.learning_phase())" |
| 179 | + ] |
| 180 | + }, |
| 181 | + { |
| 182 | + "cell_type": "markdown", |
| 183 | + "metadata": {}, |
| 184 | + "source": [ |
| 185 | + "To make use of the learning phase, simply pass the value \"1\" (training mode) or \"0\" (test mode) to feed_dict:" |
| 186 | + ] |
| 187 | + }, |
| 188 | + { |
| 189 | + "cell_type": "code", |
| 190 | + "execution_count": null, |
| 191 | + "metadata": {}, |
| 192 | + "outputs": [], |
| 193 | + "source": [ |
| 194 | + "# train mode\n", |
| 195 | + "with sess.as_default():\n", |
| 196 | + " train_step.run(feed_dict={x: batch[0], labels: batch[1], K.learning_phase(): 1})" |
| 197 | + ] |
| 198 | + }, |
| 199 | + { |
| 200 | + "cell_type": "markdown", |
| 201 | + "metadata": {}, |
| 202 | + "source": [ |
| 203 | + "For instance, here's how to add Dropout layers to our previous MNIST example:\n", |
| 204 | + "\n" |
| 205 | + ] |
| 206 | + }, |
| 207 | + { |
| 208 | + "cell_type": "code", |
| 209 | + "execution_count": 11, |
| 210 | + "metadata": {}, |
| 211 | + "outputs": [ |
| 212 | + { |
| 213 | + "name": "stdout", |
| 214 | + "output_type": "stream", |
| 215 | + "text": [ |
| 216 | + "Extracting MNIST_data\\train-images-idx3-ubyte.gz\n", |
| 217 | + "Extracting MNIST_data\\train-labels-idx1-ubyte.gz\n", |
| 218 | + "Extracting MNIST_data\\t10k-images-idx3-ubyte.gz\n", |
| 219 | + "Extracting MNIST_data\\t10k-labels-idx1-ubyte.gz\n", |
| 220 | + "[1. 1. 1. ... 0. 1. 1.]\n" |
| 221 | + ] |
| 222 | + } |
| 223 | + ], |
| 224 | + "source": [ |
| 225 | + "from keras.layers import Dropout, Dense\n", |
| 226 | + "from keras import backend as K\n", |
| 227 | + "from keras.objectives import categorical_crossentropy\n", |
| 228 | + "import tensorflow as tf\n", |
| 229 | + "from keras import backend as K\n", |
| 230 | + "from tensorflow.examples.tutorials.mnist import input_data\n", |
| 231 | + "from keras.metrics import categorical_accuracy as accuracy\n", |
| 232 | + "\n", |
| 233 | + "sess = tf.Session()\n", |
| 234 | + "K.set_session(sess)\n", |
| 235 | + "\n", |
| 236 | + "img = tf.placeholder(tf.float32, shape=(None, 784))\n", |
| 237 | + "labels = tf.placeholder(tf.float32, shape=(None, 10))\n", |
| 238 | + "\n", |
| 239 | + "x = Dense(128, activation='relu')(img)\n", |
| 240 | + "x = Dropout(0.5)(x)\n", |
| 241 | + "x = Dense(128, activation='relu')(x)\n", |
| 242 | + "x = Dropout(0.5)(x)\n", |
| 243 | + "preds = Dense(10, activation='softmax')(x)\n", |
| 244 | + "\n", |
| 245 | + "loss = tf.reduce_mean(categorical_crossentropy(labels, preds))\n", |
| 246 | + "\n", |
| 247 | + "mnist_data = input_data.read_data_sets('MNIST_data', one_hot=True)\n", |
| 248 | + "\n", |
| 249 | + "train_step = tf.train.GradientDescentOptimizer(0.5).minimize(loss)\n", |
| 250 | + "\n", |
| 251 | + "# Initialize all variables\n", |
| 252 | + "init_op = tf.global_variables_initializer()\n", |
| 253 | + "sess.run(init_op)\n", |
| 254 | + "with sess.as_default():\n", |
| 255 | + " for i in range(100):\n", |
| 256 | + " batch = mnist_data.train.next_batch(50)\n", |
| 257 | + " train_step.run(feed_dict={img: batch[0],\n", |
| 258 | + " labels: batch[1],\n", |
| 259 | + " K.learning_phase(): 1})\n", |
| 260 | + "\n", |
| 261 | + "acc_value = accuracy(labels, preds)\n", |
| 262 | + "with sess.as_default():\n", |
| 263 | + " print(acc_value.eval(feed_dict={img: mnist_data.test.images,\n", |
| 264 | + " labels: mnist_data.test.labels,\n", |
| 265 | + " K.learning_phase():0}))" |
| 266 | + ] |
| 267 | + }, |
| 268 | + { |
| 269 | + "cell_type": "code", |
| 270 | + "execution_count": null, |
| 271 | + "metadata": {}, |
| 272 | + "outputs": [], |
| 273 | + "source": [] |
| 274 | + } |
| 275 | + ], |
| 276 | + "metadata": { |
| 277 | + "kernelspec": { |
| 278 | + "display_name": "Python 3", |
| 279 | + "language": "python", |
| 280 | + "name": "python3" |
| 281 | + }, |
| 282 | + "language_info": { |
| 283 | + "codemirror_mode": { |
| 284 | + "name": "ipython", |
| 285 | + "version": 3 |
| 286 | + }, |
| 287 | + "file_extension": ".py", |
| 288 | + "mimetype": "text/x-python", |
| 289 | + "name": "python", |
| 290 | + "nbconvert_exporter": "python", |
| 291 | + "pygments_lexer": "ipython3", |
| 292 | + "version": "3.6.3" |
| 293 | + } |
| 294 | + }, |
| 295 | + "nbformat": 4, |
| 296 | + "nbformat_minor": 2 |
| 297 | +} |
0 commit comments