forked from liuliu/ccv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathccv_classic.c
624 lines (618 loc) · 22.7 KB
/
ccv_classic.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
#include "ccv.h"
#include "ccv_internal.h"
void ccv_hog(ccv_dense_matrix_t* a, ccv_dense_matrix_t** b, int b_type, int sbin, int size)
{
assert(a->rows >= size && a->cols >= size && (4 + sbin * 3) <= CCV_MAX_CHANNEL);
int rows = a->rows / size;
int cols = a->cols / size;
b_type = (CCV_GET_DATA_TYPE(b_type) == CCV_64F) ? CCV_64F | (4 + sbin * 3) : CCV_32F | (4 + sbin * 3);
ccv_declare_derived_signature(sig, a->sig != 0, ccv_sign_with_format(64, "ccv_hog(%d,%d)", sbin, size), a->sig, CCV_EOF_SIGN);
ccv_dense_matrix_t* db = *b = ccv_dense_matrix_renew(*b, rows, cols, CCV_64F | CCV_32F | (4 + sbin * 3), b_type, sig);
ccv_object_return_if_cached(, db);
ccv_dense_matrix_t* ag = 0;
ccv_dense_matrix_t* mg = 0;
ccv_gradient(a, &ag, 0, &mg, 0, 1, 1);
float* agp = ag->data.f32;
float* mgp = mg->data.f32;
int i, j, k, ch = CCV_GET_CHANNEL(a->type);
ccv_dense_matrix_t* cn = ccv_dense_matrix_new(rows, cols, CCV_GET_DATA_TYPE(db->type) | (sbin * 2), 0, 0);
ccv_dense_matrix_t* ca = ccv_dense_matrix_new(rows, cols, CCV_GET_DATA_TYPE(db->type) | CCV_C1, 0, 0);
ccv_zero(cn);
// normalize sbin direction-sensitive and sbin * 2 insensitive over 4 normalization factor
// accumulating them over sbin * 2 + sbin + 4 channels
// TNA - truncation - normalization - accumulation
#define TNA(_for_type, idx, a, b, c, d) \
{ \
_for_type norm = 1.0 / sqrt(cap[a] + cap[b] + cap[c] + cap[d] + 1e-4); \
for (k = 0; k < sbin * 2; k++) \
{ \
_for_type v = 0.5 * ccv_min(cnp[k] * norm, 0.2); \
dbp[4 + sbin + k] += v; \
dbp[idx] += v; \
} \
dbp[idx] *= 0.2357; \
for (k = 0; k < sbin; k++) \
{ \
_for_type v = 0.5 * ccv_min((cnp[k] + cnp[k + sbin]) * norm, 0.2); \
dbp[4 + k] += v; \
} \
}
#define for_block(_, _for_type) \
_for_type* cnp = (_for_type*)ccv_get_dense_matrix_cell(cn, 0, 0, 0); \
for (i = 0; i < rows * size; i++) \
{ \
for (j = 0; j < cols * size; j++) \
{ \
_for_type agv = agp[j * ch]; \
_for_type mgv = mgp[j * ch]; \
for (k = 1; k < ch; k++) \
if (mgp[j * ch + k] > mgv) \
{ \
mgv = mgp[j * ch + k]; \
agv = agp[j * ch + k]; \
} \
_for_type agr0 = (ccv_clamp(agv, 0, 359.99) / 360.0) * (sbin * 2); \
int ag0 = (int)agr0; \
int ag1 = (ag0 + 1 < sbin * 2) ? ag0 + 1 : 0; \
agr0 = agr0 - ag0; \
_for_type agr1 = 1.0 - agr0; \
mgv = mgv / 255.0; \
_for_type yp = ((_for_type)i + 0.5) / (_for_type)size - 0.5; \
_for_type xp = ((_for_type)j + 0.5) / (_for_type)size - 0.5; \
int iyp = (int)floor(yp); \
assert(iyp < rows); \
int ixp = (int)floor(xp); \
assert(ixp < cols); \
_for_type vy0 = yp - iyp; \
_for_type vx0 = xp - ixp; \
_for_type vy1 = 1.0 - vy0; \
_for_type vx1 = 1.0 - vx0; \
if (ixp >= 0 && iyp >= 0) \
{ \
cnp[iyp * cn->cols * sbin * 2 + ixp * sbin * 2 + ag0] += agr1 * vx1 * vy1 * mgv; \
cnp[iyp * cn->cols * sbin * 2 + ixp * sbin * 2 + ag1] += agr0 * vx1 * vy1 * mgv; \
} \
if (ixp + 1 < cn->cols && iyp >= 0) \
{ \
cnp[iyp * cn->cols * sbin * 2 + (ixp + 1) * sbin * 2 + ag0] += agr1 * vx0 * vy1 * mgv; \
cnp[iyp * cn->cols * sbin * 2 + (ixp + 1) * sbin * 2 + ag1] += agr0 * vx0 * vy1 * mgv; \
} \
if (ixp >= 0 && iyp + 1 < cn->rows) \
{ \
cnp[(iyp + 1) * cn->cols * sbin * 2 + ixp * sbin * 2 + ag0] += agr1 * vx1 * vy0 * mgv; \
cnp[(iyp + 1) * cn->cols * sbin * 2 + ixp * sbin * 2 + ag1] += agr0 * vx1 * vy0 * mgv; \
} \
if (ixp + 1 < cn->cols && iyp + 1 < cn->rows) \
{ \
cnp[(iyp + 1) * cn->cols * sbin * 2 + (ixp + 1) * sbin * 2 + ag0] += agr1 * vx0 * vy0 * mgv; \
cnp[(iyp + 1) * cn->cols * sbin * 2 + (ixp + 1) * sbin * 2 + ag1] += agr0 * vx0 * vy0 * mgv; \
} \
} \
agp += a->cols * ch; \
mgp += a->cols * ch; \
} \
ccv_matrix_free(ag); \
ccv_matrix_free(mg); \
cnp = (_for_type*)ccv_get_dense_matrix_cell(cn, 0, 0, 0); \
_for_type* cap = (_for_type*)ccv_get_dense_matrix_cell(ca, 0, 0, 0); \
for (i = 0; i < rows; i++) \
{ \
for (j = 0; j < cols; j++) \
{ \
*cap = 0; \
for (k = 0; k < sbin; k++) \
*cap += (cnp[k] + cnp[k + sbin]) * (cnp[k] + cnp[k + sbin]); \
cnp += 2 * sbin; \
cap++; \
} \
} \
cnp = (_for_type*)ccv_get_dense_matrix_cell(cn, 0, 0, 0); \
cap = (_for_type*)ccv_get_dense_matrix_cell(ca, 0, 0, 0); \
ccv_zero(db); \
_for_type* dbp = (_for_type*)ccv_get_dense_matrix_cell(db, 0, 0, 0); \
TNA(_for_type, 0, 1, cols + 1, cols, 0); \
TNA(_for_type, 1, 1, 1, 0, 0); \
TNA(_for_type, 2, 0, cols, cols, 0); \
TNA(_for_type, 3, 0, 0, 0, 0); \
cnp += 2 * sbin; \
dbp += 3 * sbin + 4; \
cap++; \
for (j = 1; j < cols - 1; j++) \
{ \
TNA(_for_type, 0, 1, cols + 1, cols, 0); \
TNA(_for_type, 1, 1, 1, 0, 0); \
TNA(_for_type, 2, -1, cols - 1, cols, 0); \
TNA(_for_type, 3, -1, -1, 0, 0); \
cnp += 2 * sbin; \
dbp += 3 * sbin + 4; \
cap++; \
} \
TNA(_for_type, 0, 0, cols, cols, 0); \
TNA(_for_type, 1, 0, 0, 0, 0); \
TNA(_for_type, 2, -1, cols - 1, cols, 0); \
TNA(_for_type, 3, -1, -1, 0, 0); \
cnp += 2 * sbin; \
dbp += 3 * sbin + 4; \
cap++; \
for (i = 1; i < rows - 1; i++) \
{ \
TNA(_for_type, 0, 1, cols + 1, cols, 0); \
TNA(_for_type, 1, 1, -cols + 1, -cols, 0); \
TNA(_for_type, 2, 0, cols, cols, 0); \
TNA(_for_type, 3, 0, -cols, -cols, 0); \
cnp += 2 * sbin; \
dbp += 3 * sbin + 4; \
cap++; \
for (j = 1; j < cols - 1; j++) \
{ \
TNA(_for_type, 0, 1, cols + 1, cols, 0); \
TNA(_for_type, 1, 1, -cols + 1, -cols, 0); \
TNA(_for_type, 2, -1, cols - 1, cols, 0); \
TNA(_for_type, 3, -1, -cols - 1, -cols, 0); \
cnp += 2 * sbin; \
dbp += 3 * sbin + 4; \
cap++; \
} \
TNA(_for_type, 0, 0, cols, cols, 0); \
TNA(_for_type, 1, 0, -cols, -cols, 0); \
TNA(_for_type, 2, -1, cols - 1, cols, 0); \
TNA(_for_type, 3, -1, -cols - 1, -cols, 0); \
cnp += 2 * sbin; \
dbp += 3 * sbin + 4; \
cap++; \
} \
TNA(_for_type, 0, 1, 1, 0, 0); \
TNA(_for_type, 1, 1, -cols + 1, -cols, 0); \
TNA(_for_type, 2, 0, 0, 0, 0); \
TNA(_for_type, 3, 0, -cols, -cols, 0); \
cnp += 2 * sbin; \
dbp += 3 * sbin + 4; \
cap++; \
for (j = 1; j < cols - 1; j++) \
{ \
TNA(_for_type, 0, 1, 1, 0, 0); \
TNA(_for_type, 1, 1, -cols + 1, -cols, 0); \
TNA(_for_type, 2, -1, -1, 0, 0); \
TNA(_for_type, 3, -1, -cols - 1, -cols, 0); \
cnp += 2 * sbin; \
dbp += 3 * sbin + 4; \
cap++; \
} \
TNA(_for_type, 0, 0, 0, 0, 0); \
TNA(_for_type, 1, 0, -cols, -cols, 0); \
TNA(_for_type, 2, -1, -1, 0, 0); \
TNA(_for_type, 3, -1, -cols - 1, -cols, 0);
ccv_matrix_typeof(db->type, for_block);
#undef for_block
#undef TNA
ccv_matrix_free(cn);
ccv_matrix_free(ca);
}
/* it is a supposely cleaner and faster implementation than original OpenCV (ccv_canny_deprecated,
* removed, since the newer implementation achieve bit accuracy with OpenCV's), after a lot
* profiling, the current implementation still uses integer to speed up */
void ccv_canny(ccv_dense_matrix_t* a, ccv_dense_matrix_t** b, int type, int size, double low_thresh, double high_thresh)
{
assert(CCV_GET_CHANNEL(a->type) == CCV_C1);
ccv_declare_derived_signature(sig, a->sig != 0, ccv_sign_with_format(64, "ccv_canny(%d,%la,%la)", size, low_thresh, high_thresh), a->sig, CCV_EOF_SIGN);
type = (type == 0) ? CCV_8U | CCV_C1 : CCV_GET_DATA_TYPE(type) | CCV_C1;
ccv_dense_matrix_t* db = *b = ccv_dense_matrix_renew(*b, a->rows, a->cols, CCV_C1 | CCV_ALL_DATA_TYPE, type, sig);
ccv_object_return_if_cached(, db);
if ((a->type & CCV_8U) || (a->type & CCV_32S))
{
ccv_dense_matrix_t* dx = 0;
ccv_dense_matrix_t* dy = 0;
ccv_sobel(a, &dx, 0, size, 0);
ccv_sobel(a, &dy, 0, 0, size);
/* special case, all integer */
int low = (int)(low_thresh + 0.5);
int high = (int)(high_thresh + 0.5);
int* dxi = dx->data.i32;
int* dyi = dy->data.i32;
int i, j;
int* mbuf = (int*)alloca(3 * (a->cols + 2) * sizeof(int));
memset(mbuf, 0, 3 * (a->cols + 2) * sizeof(int));
int* rows[3];
rows[0] = mbuf + 1;
rows[1] = mbuf + (a->cols + 2) + 1;
rows[2] = mbuf + 2 * (a->cols + 2) + 1;
for (j = 0; j < a->cols; j++)
rows[1][j] = abs(dxi[j]) + abs(dyi[j]);
dxi += a->cols;
dyi += a->cols;
int* map = (int*)ccmalloc(sizeof(int) * (a->rows + 2) * (a->cols + 2));
memset(map, 0, sizeof(int) * (a->cols + 2));
int* map_ptr = map + a->cols + 2 + 1;
int map_cols = a->cols + 2;
int** stack = (int**)ccmalloc(sizeof(int*) * a->rows * a->cols);
int** stack_top = stack;
int** stack_bottom = stack;
for (i = 1; i <= a->rows; i++)
{
/* the if clause should be unswitched automatically, no need to manually do so */
if (i == a->rows)
memset(rows[2], 0, sizeof(int) * a->cols);
else
for (j = 0; j < a->cols; j++)
rows[2][j] = abs(dxi[j]) + abs(dyi[j]);
int* _dx = dxi - a->cols;
int* _dy = dyi - a->cols;
map_ptr[-1] = 0;
int suppress = 0;
for (j = 0; j < a->cols; j++)
{
int f = rows[1][j];
if (f > low)
{
int x = abs(_dx[j]);
int y = abs(_dy[j]);
int s = _dx[j] ^ _dy[j];
/* x * tan(22.5) */
int tg22x = x * (int)(0.4142135623730950488016887242097 * (1 << 15) + 0.5);
/* x * tan(67.5) == 2 * x + x * tan(22.5) */
int tg67x = tg22x + ((x + x) << 15);
y <<= 15;
/* it is a little different from the Canny original paper because we adopted the coordinate system of
* top-left corner as origin. Thus, the derivative of y convolved with matrix:
* |-1 -2 -1|
* | 0 0 0|
* | 1 2 1|
* actually is the reverse of real y. Thus, the computed angle will be mirrored around x-axis.
* In this case, when angle is -45 (135), we compare with north-east and south-west, and for 45,
* we compare with north-west and south-east (in traditional coordinate system sense, the same if we
* adopt top-left corner as origin for "north", "south", "east", "west" accordingly) */
#define high_block \
{ \
if (f > high && !suppress && map_ptr[j - map_cols] != 2) \
{ \
map_ptr[j] = 2; \
suppress = 1; \
*(stack_top++) = map_ptr + j; \
} else { \
map_ptr[j] = 1; \
} \
continue; \
}
/* sometimes, we end up with same f in integer domain, for that case, we will take the first occurrence
* suppressing the second with flag */
if (y < tg22x)
{
if (f > rows[1][j - 1] && f >= rows[1][j + 1])
high_block;
} else if (y > tg67x) {
if (f > rows[0][j] && f >= rows[2][j])
high_block;
} else {
s = s < 0 ? -1 : 1;
if (f > rows[0][j - s] && f > rows[2][j + s])
high_block;
}
#undef high_block
}
map_ptr[j] = 0;
suppress = 0;
}
map_ptr[a->cols] = 0;
map_ptr += map_cols;
dxi += a->cols;
dyi += a->cols;
int* row = rows[0];
rows[0] = rows[1];
rows[1] = rows[2];
rows[2] = row;
}
memset(map_ptr - map_cols - 1, 0, sizeof(int) * (a->cols + 2));
int dr[] = {-1, 1, -map_cols - 1, -map_cols, -map_cols + 1, map_cols - 1, map_cols, map_cols + 1};
while (stack_top > stack_bottom)
{
map_ptr = *(--stack_top);
for (i = 0; i < 8; i++)
if (map_ptr[dr[i]] == 1)
{
map_ptr[dr[i]] = 2;
*(stack_top++) = map_ptr + dr[i];
}
}
map_ptr = map + map_cols + 1;
unsigned char* b_ptr = db->data.u8;
#define for_block(_, _for_set) \
for (i = 0; i < a->rows; i++) \
{ \
for (j = 0; j < a->cols; j++) \
_for_set(b_ptr, j, (map_ptr[j] == 2), 0); \
map_ptr += map_cols; \
b_ptr += db->step; \
}
ccv_matrix_setter(db->type, for_block);
#undef for_block
ccfree(stack);
ccfree(map);
ccv_matrix_free(dx);
ccv_matrix_free(dy);
} else {
/* general case, use all ccv facilities to deal with it */
ccv_dense_matrix_t* mg = 0;
ccv_dense_matrix_t* ag = 0;
ccv_gradient(a, &ag, 0, &mg, 0, size, size);
ccv_matrix_free(ag);
ccv_matrix_free(mg);
/* FIXME: Canny implementation for general case */
}
}
void ccv_close_outline(ccv_dense_matrix_t* a, ccv_dense_matrix_t** b, int type)
{
assert((CCV_GET_CHANNEL(a->type) == CCV_C1) && ((a->type & CCV_8U) || (a->type & CCV_32S) || (a->type & CCV_64S)));
ccv_declare_derived_signature(sig, a->sig != 0, ccv_sign_with_literal("ccv_close_outline"), a->sig, CCV_EOF_SIGN);
type = ((type == 0) || (type & CCV_32F) || (type & CCV_64F)) ? CCV_GET_DATA_TYPE(a->type) | CCV_C1 : CCV_GET_DATA_TYPE(type) | CCV_C1;
ccv_dense_matrix_t* db = *b = ccv_dense_matrix_renew(*b, a->rows, a->cols, CCV_C1 | CCV_ALL_DATA_TYPE, type, sig);
ccv_object_return_if_cached(, db);
int i, j;
unsigned char* a_ptr = a->data.u8;
unsigned char* b_ptr = db->data.u8;
ccv_zero(db);
#define for_block(_for_get, _for_set_b, _for_get_b) \
for (i = 0; i < a->rows - 1; i++) \
{ \
for (j = 0; j < a->cols - 1; j++) \
{ \
if (!_for_get_b(b_ptr, j, 0)) \
_for_set_b(b_ptr, j, _for_get(a_ptr, j, 0), 0); \
if (_for_get(a_ptr, j, 0) && _for_get(a_ptr + a->step, j + 1, 0)) \
{ \
_for_set_b(b_ptr + a->step, j, 1, 0); \
_for_set_b(b_ptr, j + 1, 1, 0); \
} \
if (_for_get(a_ptr + a->step, j, 0) && _for_get(a_ptr, j + 1, 0)) \
{ \
_for_set_b(b_ptr, j, 1, 0); \
_for_set_b(b_ptr + a->step, j + 1, 1, 0); \
} \
} \
if (!_for_get_b(b_ptr, a->cols - 1, 0)) \
_for_set_b(b_ptr, a->cols - 1, _for_get(a_ptr, a->cols - 1, 0), 0); \
a_ptr += a->step; \
b_ptr += db->step; \
} \
for (j = 0; j < a->cols; j++) \
{ \
if (!_for_get_b(b_ptr, j, 0)) \
_for_set_b(b_ptr, j, _for_get(a_ptr, j, 0), 0); \
}
ccv_matrix_getter_integer_only(a->type, ccv_matrix_setter_getter_integer_only, db->type, for_block);
#undef for_block
}
int ccv_otsu(ccv_dense_matrix_t* a, double* outvar, int range)
{
assert((a->type & CCV_32S) || (a->type & CCV_8U));
int* histogram = (int*)alloca(range * sizeof(int));
memset(histogram, 0, sizeof(int) * range);
int i, j;
unsigned char* a_ptr = a->data.u8;
#define for_block(_, _for_get) \
for (i = 0; i < a->rows; i++) \
{ \
for (j = 0; j < a->cols; j++) \
histogram[ccv_clamp((int)_for_get(a_ptr, j, 0), 0, range - 1)]++; \
a_ptr += a->step; \
}
ccv_matrix_getter(a->type, for_block);
#undef for_block
double sum = 0, sumB = 0;
for (i = 0; i < range; i++)
sum += i * histogram[i];
int wB = 0, wF = 0, total = a->rows * a->cols;
double maxVar = 0;
int threshold = 0;
for (i = 0; i < range; i++)
{
wB += histogram[i];
if (wB == 0)
continue;
wF = total - wB;
if (wF == 0)
break;
sumB += i * histogram[i];
double mB = sumB / wB;
double mF = (sum - sumB) / wF;
double var = wB * wF * (mB - mF) * (mB - mF);
if (var > maxVar)
{
maxVar = var;
threshold = i;
}
}
if (outvar != 0)
*outvar = maxVar / total / total;
return threshold;
}
#define LK_MAX_ITER (30)
#define LK_EPSILON (0.01)
/* this code is a rewrite from OpenCV's legendary Lucas-Kanade optical flow implementation */
void ccv_optical_flow_lucas_kanade(ccv_dense_matrix_t* a, ccv_dense_matrix_t* b, ccv_array_t* point_a, ccv_array_t** point_b, ccv_size_t win_size, int level, double min_eigen)
{
assert(a && b && a->rows == b->rows && a->cols == b->cols);
assert(CCV_GET_CHANNEL(a->type) == CCV_GET_CHANNEL(b->type) && CCV_GET_DATA_TYPE(a->type) == CCV_GET_DATA_TYPE(b->type));
assert(CCV_GET_CHANNEL(a->type) == 1);
assert(CCV_GET_DATA_TYPE(a->type) == CCV_8U);
assert(point_a->rnum > 0);
level = ccv_clamp(level + 1, 1, (int)(log((double)ccv_min(a->rows, a->cols) / ccv_max(win_size.width * 2, win_size.height * 2)) / log(2.0) + 0.5));
ccv_declare_derived_signature(sig, a->sig != 0 && b->sig != 0 && point_a->sig != 0, ccv_sign_with_format(128, "ccv_optical_flow_lucas_kanade(%d,%d,%d,%la)", win_size.width, win_size.height, level, min_eigen), a->sig, b->sig, point_a->sig, CCV_EOF_SIGN);
ccv_array_t* seq = *point_b = ccv_array_new(sizeof(ccv_decimal_point_with_status_t), point_a->rnum, sig);
ccv_object_return_if_cached(, seq);
seq->rnum = point_a->rnum;
ccv_dense_matrix_t** pyr_a = (ccv_dense_matrix_t**)alloca(sizeof(ccv_dense_matrix_t*) * level);
ccv_dense_matrix_t** pyr_a_dx = (ccv_dense_matrix_t**)alloca(sizeof(ccv_dense_matrix_t*) * level);
ccv_dense_matrix_t** pyr_a_dy = (ccv_dense_matrix_t**)alloca(sizeof(ccv_dense_matrix_t*) * level);
ccv_dense_matrix_t** pyr_b = (ccv_dense_matrix_t**)alloca(sizeof(ccv_dense_matrix_t*) * level);
int i, j, t, x, y;
/* generating image pyramid */
pyr_a[0] = a;
pyr_a_dx[0] = pyr_a_dy[0] = 0;
ccv_sobel(pyr_a[0], &pyr_a_dx[0], 0, 3, 0);
ccv_sobel(pyr_a[0], &pyr_a_dy[0], 0, 0, 3);
pyr_b[0] = b;
for (i = 1; i < level; i++)
{
pyr_a[i] = pyr_a_dx[i] = pyr_a_dy[i] = pyr_b[i] = 0;
ccv_sample_down(pyr_a[i - 1], &pyr_a[i], 0, 0, 0);
ccv_sobel(pyr_a[i], &pyr_a_dx[i], 0, 3, 0);
ccv_sobel(pyr_a[i], &pyr_a_dy[i], 0, 0, 3);
ccv_sample_down(pyr_b[i - 1], &pyr_b[i], 0, 0, 0);
}
int* wi = (int*)alloca(sizeof(int) * win_size.width * win_size.height);
int* widx = (int*)alloca(sizeof(int) * win_size.width * win_size.height);
int* widy = (int*)alloca(sizeof(int) * win_size.width * win_size.height);
ccv_decimal_point_t half_win = ccv_decimal_point((win_size.width - 1) * 0.5f, (win_size.height - 1) * 0.5f);
const int W_BITS14 = 14, W_BITS7 = 7, W_BITS9 = 9;
const float FLT_SCALE = 1.0f / (1 << 25);
// clean up status to 1
for (i = 0; i < point_a->rnum; i++)
{
ccv_decimal_point_with_status_t* point_with_status = (ccv_decimal_point_with_status_t*)ccv_array_get(seq, i);
point_with_status->status = 1;
}
int prev_rows, prev_cols;
for (t = level - 1; t >= 0; t--)
{
ccv_dense_matrix_t* a = pyr_a[t];
ccv_dense_matrix_t* adx = pyr_a_dx[t];
ccv_dense_matrix_t* ady = pyr_a_dy[t];
assert(CCV_GET_DATA_TYPE(adx->type) == CCV_32S);
assert(CCV_GET_DATA_TYPE(ady->type) == CCV_32S);
ccv_dense_matrix_t* b = pyr_b[t];
for (i = 0; i < point_a->rnum; i++)
{
ccv_decimal_point_t prev_point = *(ccv_decimal_point_t*)ccv_array_get(point_a, i);
ccv_decimal_point_with_status_t* point_with_status = (ccv_decimal_point_with_status_t*)ccv_array_get(seq, i);
prev_point.x = prev_point.x / (float)(1 << t);
prev_point.y = prev_point.y / (float)(1 << t);
ccv_decimal_point_t next_point;
if (t == level - 1)
next_point = prev_point;
else {
next_point.x = point_with_status->point.x * 2 + (a->cols - prev_cols * 2) * 0.5;
next_point.y = point_with_status->point.y * 2 + (a->rows - prev_rows * 2) * 0.5;
}
point_with_status->point = next_point;
prev_point.x -= half_win.x;
prev_point.y -= half_win.y;
ccv_point_t iprev_point = ccv_point((int)prev_point.x, (int)prev_point.y);
if (iprev_point.x < 0 || iprev_point.x >= a->cols - win_size.width - 1 ||
iprev_point.y < 0 || iprev_point.y >= a->rows - win_size.height - 1)
{
if (t == 0)
point_with_status->status = 0;
continue;
}
float xd = prev_point.x - iprev_point.x;
float yd = prev_point.y - iprev_point.y;
int iw00 = (int)((1 - xd) * (1 - yd) * (1 << W_BITS14) + 0.5);
int iw01 = (int)(xd * (1 - yd) * (1 << W_BITS14) + 0.5);
int iw10 = (int)((1 - xd) * yd * (1 << W_BITS14) + 0.5);
int iw11 = (1 << W_BITS14) - iw00 - iw01 - iw10;
float a11 = 0, a12 = 0, a22 = 0;
unsigned char* a_ptr = (unsigned char*)ccv_get_dense_matrix_cell_by(CCV_C1 | CCV_8U, a, iprev_point.y, iprev_point.x, 0);
int* adx_ptr = (int*)ccv_get_dense_matrix_cell_by(CCV_C1 | CCV_32S, adx, iprev_point.y, iprev_point.x, 0);
int* ady_ptr = (int*)ccv_get_dense_matrix_cell_by(CCV_C1 | CCV_32S, ady, iprev_point.y, iprev_point.x, 0);
int* wi_ptr = wi;
int* widx_ptr = widx;
int* widy_ptr = widy;
for (y = 0; y < win_size.height; y++)
{
for (x = 0; x < win_size.width; x++)
{
wi_ptr[x] = ccv_descale(a_ptr[x] * iw00 + a_ptr[x + 1] * iw01 + a_ptr[x + a->step] * iw10 + a_ptr[x + a->step + 1] * iw11, W_BITS7);
// because we use 3x3 sobel, which scaled derivative up by 4
widx_ptr[x] = ccv_descale(adx_ptr[x] * iw00 + adx_ptr[x + 1] * iw01 + adx_ptr[x + adx->cols] * iw10 + adx_ptr[x + adx->cols + 1] * iw11, W_BITS9);
widy_ptr[x] = ccv_descale(ady_ptr[x] * iw00 + ady_ptr[x + 1] * iw01 + ady_ptr[x + ady->cols] + iw10 + ady_ptr[x + ady->cols + 1] * iw11, W_BITS9);
a11 += (float)(widx_ptr[x] * widx_ptr[x]);
a12 += (float)(widx_ptr[x] * widy_ptr[x]);
a22 += (float)(widy_ptr[x] * widy_ptr[x]);
}
a_ptr += a->step;
adx_ptr += adx->cols;
ady_ptr += ady->cols;
wi_ptr += win_size.width;
widx_ptr += win_size.width;
widy_ptr += win_size.width;
}
a11 *= FLT_SCALE;
a12 *= FLT_SCALE;
a22 *= FLT_SCALE;
float D = a11 * a22 - a12 * a12;
float eigen = (a22 + a11 - sqrtf((a11 - a22) * (a11 - a22) + 4.0f * a12 * a12)) / (2 * win_size.width * win_size.height);
if (eigen < min_eigen || D < FLT_EPSILON)
{
if (t == 0)
point_with_status->status = 0;
continue;
}
D = 1.0f / D;
next_point.x -= half_win.x;
next_point.y -= half_win.y;
ccv_decimal_point_t prev_delta;
for (j = 0; j < LK_MAX_ITER; j++)
{
ccv_point_t inext_point = ccv_point((int)next_point.x, (int)next_point.y);
if (inext_point.x < 0 || inext_point.x >= a->cols - win_size.width - 1 ||
inext_point.y < 0 || inext_point.y >= a->rows - win_size.height - 1)
break;
float xd = next_point.x - inext_point.x;
float yd = next_point.y - inext_point.y;
int iw00 = (int)((1 - xd) * (1 - yd) * (1 << W_BITS14) + 0.5);
int iw01 = (int)(xd * (1 - yd) * (1 << W_BITS14) + 0.5);
int iw10 = (int)((1 - xd) * yd * (1 << W_BITS14) + 0.5);
int iw11 = (1 << W_BITS14) - iw00 - iw01 - iw10;
float b1 = 0, b2 = 0;
unsigned char* b_ptr = (unsigned char*)ccv_get_dense_matrix_cell_by(CCV_C1 | CCV_8U, b, inext_point.y, inext_point.x, 0);
int* wi_ptr = wi;
int* widx_ptr = widx;
int* widy_ptr = widy;
for (y = 0; y < win_size.height; y++)
{
for (x = 0; x < win_size.width; x++)
{
int diff = ccv_descale(b_ptr[x] * iw00 + b_ptr[x + 1] * iw01 + b_ptr[x + b->step] * iw10 + b_ptr[x + b->step + 1] * iw11, W_BITS7) - wi_ptr[x];
b1 += (float)(diff * widx_ptr[x]);
b2 += (float)(diff * widy_ptr[x]);
}
b_ptr += b->step;
wi_ptr += win_size.width;
widx_ptr += win_size.width;
widy_ptr += win_size.width;
}
b1 *= FLT_SCALE;
b2 *= FLT_SCALE;
ccv_decimal_point_t delta = ccv_decimal_point((a12 * b2 - a22 * b1) * D, (a12 * b1 - a11 * b2) * D);
next_point.x += delta.x;
next_point.y += delta.y;
if (delta.x * delta.x + delta.y * delta.y < LK_EPSILON)
break;
if (j > 0 && fabs(prev_delta.x - delta.x) < 0.01 && fabs(prev_delta.y - delta.y) < 0.01)
{
next_point.x -= delta.x * 0.5;
next_point.y -= delta.y * 0.5;
break;
}
prev_delta = delta;
}
ccv_point_t inext_point = ccv_point((int)next_point.x, (int)next_point.y);
if (inext_point.x < 0 || inext_point.x >= a->cols - win_size.width - 1 ||
inext_point.y < 0 || inext_point.y >= a->rows - win_size.height - 1)
point_with_status->status = 0;
else {
point_with_status->point.x = next_point.x + half_win.x;
point_with_status->point.y = next_point.y + half_win.y;
}
}
prev_rows = a->rows;
prev_cols = a->cols;
ccv_matrix_free(adx);
ccv_matrix_free(ady);
if (t > 0)
{
ccv_matrix_free(a);
ccv_matrix_free(b);
}
}
}