forked from overtake/telegram
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPOPSpringSolver.h
executable file
·190 lines (157 loc) · 4.63 KB
/
POPSpringSolver.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
/**
Copyright (c) 2014-present, Facebook, Inc.
All rights reserved.
This source code is licensed under the BSD-style license found in the
LICENSE file in the root directory of this source tree. An additional grant
of patent rights can be found in the PATENTS file in the same directory.
*/
#import <Foundation/Foundation.h>
#import "POPVector.h"
namespace POP {
template <typename T>
struct SSState
{
T p;
T v;
};
template <typename T>
struct SSDerivative
{
T dp;
T dv;
};
typedef SSState<Vector4d> SSState4d;
typedef SSDerivative<Vector4d> SSDerivative4d;
const CFTimeInterval solverDt = 0.001f;
const CFTimeInterval maxSolverDt = 30.0f;
/**
Templated spring solver class.
*/
template <typename T>
class SpringSolver
{
double _k; // stiffness
double _b; // dampening
double _m; // mass
double _tp; // threshold
double _tv; // threshold velocity
double _ta; // threshold acceleration
CFTimeInterval _accumulatedTime;
SSState<T> _lastState;
T _lastDv;
bool _started;
public:
SpringSolver(double k, double b, double m = 1) : _k(k), _b(b), _m(m), _started(false)
{
_accumulatedTime = 0;
_lastState.p = T::Zero();
_lastState.v = T::Zero();
_lastDv = T::Zero();
setThreshold(1.);
}
~SpringSolver()
{
}
bool started()
{
return _started;
}
void setConstants(double k, double b, double m)
{
_k = k;
_b = b;
_m = m;
}
void setThreshold(double t)
{
_tp = t / 2; // half a unit
_tv = 25.0 * t; // 5 units per second, squared for comparison
_ta = 625.0 * t * t; // 5 units per second squared, squared for comparison
}
T acceleration(const SSState<T> &state, double t)
{
return state.p*(-_k/_m) - state.v*(_b/_m);
}
SSDerivative<T> evaluate(const SSState<T> &initial, double t)
{
SSDerivative<T> output;
output.dp = initial.v;
output.dv = acceleration(initial, t);
return output;
}
SSDerivative<T> evaluate(const SSState<T> &initial, double t, double dt, const SSDerivative<T> &d)
{
SSState<T> state;
state.p = initial.p + d.dp*dt;
state.v = initial.v + d.dv*dt;
SSDerivative<T> output;
output.dp = state.v;
output.dv = acceleration(state, t+dt);
return output;
}
void integrate(SSState<T> &state, double t, double dt)
{
SSDerivative<T> a = evaluate(state, t);
SSDerivative<T> b = evaluate(state, t, dt*0.5, a);
SSDerivative<T> c = evaluate(state, t, dt*0.5, b);
SSDerivative<T> d = evaluate(state, t, dt, c);
T dpdt = (a.dp + (b.dp + c.dp)*2.0 + d.dp) * (1.0/6.0);
T dvdt = (a.dv + (b.dv + c.dv)*2.0 + d.dv) * (1.0/6.0);
state.p = state.p + dpdt*dt;
state.v = state.v + dvdt*dt;
_lastDv = dvdt;
}
SSState<T> interpolate(const SSState<T> &previous, const SSState<T> ¤t, double alpha)
{
SSState<T> state;
state.p = current.p*alpha + previous.p*(1-alpha);
state.v = current.v*alpha + previous.v*(1-alpha);
return state;
}
void advance(SSState<T> &state, double t, double dt)
{
_started = true;
if (dt > maxSolverDt) {
// excessive time step, force shut down
_lastDv = _lastState.v = _lastState.p = T::Zero();
} else {
_accumulatedTime += dt;
SSState<T> previousState = state, currentState = state;
while (_accumulatedTime >= solverDt) {
previousState = currentState;
this->integrate(currentState, t, solverDt);
t += solverDt;
_accumulatedTime -= solverDt;
}
CFTimeInterval alpha = _accumulatedTime / solverDt;
_lastState = state = this->interpolate(previousState, currentState, alpha);
}
}
bool hasConverged()
{
if (!_started) {
return false;
}
for (size_t idx = 0; idx < _lastState.p.size(); idx++) {
if (fabs(_lastState.p(idx)) >= _tp) {
return false;
}
}
return (_lastState.v.squaredNorm() < _tv) && (_lastDv.squaredNorm() < _ta);
}
void reset()
{
_accumulatedTime = 0;
_lastState.p = T::Zero();
_lastState.v = T::Zero();
_lastDv = T::Zero();
_started = false;
}
};
/**
Convenience spring solver type definitions.
*/
typedef SpringSolver<Vector2d> SpringSolver2d;
typedef SpringSolver<Vector3d> SpringSolver3d;
typedef SpringSolver<Vector4d> SpringSolver4d;
}