forked from lopuhin/kaggle-dstl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
executable file
·704 lines (646 loc) · 29.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
#!/usr/bin/env python3
import argparse
import json
from functools import partial
from pathlib import Path
from pprint import pprint
import random
import time
from typing import List, Iterable
import attr
import cv2
import numpy as np
from sklearn.model_selection import ShuffleSplit
import tensorboard_logger
import torch
from torch.autograd import Variable
import torch.cuda
import torch.optim as optim
import torch.nn as nn
import tqdm
import utils
from models import HyperParams
import models
logger = utils.get_logger(__name__)
@attr.s
class Image:
id = attr.ib()
data = attr.ib()
mask = attr.ib(default=None)
_dist_mask = attr.ib(default=None)
@property
def size(self):
assert self.data.shape[0] <= 20
return self.data.shape[1:]
@property
def dist_mask(self):
if self._dist_mask is None:
assert self.mask.shape[0] <= 10
self._dist_mask = (
np.stack([utils.dist_mask(m, max_dist=5) for m in self.mask])
.astype(np.float16))
return self._dist_mask
class Model:
def __init__(self, hps: HyperParams):
self.hps = hps
self.net = getattr(models, hps.net)(hps)
self.bce_loss = nn.BCELoss()
self.mse_loss = nn.MSELoss()
self.optimizer = None # type: optim.Optimizer
self.tb_logger = None # type: tensorboard_logger.Logger
self.logdir = None # type: Path
self.on_gpu = torch.cuda.is_available()
if self.on_gpu:
self.net.cuda()
def _init_optimizer(self, lr):
return optim.Adam(self.net.parameters(),
lr=lr, weight_decay=self.hps.weight_decay)
def _var(self, x: torch.FloatTensor) -> Variable:
return Variable(x.cuda() if self.on_gpu else x)
def train_step(self, x, y, dist_y):
self.optimizer.zero_grad()
y_pred = self.net(self._var(x))
batch_size = x.size()[0]
losses = self.losses(y, dist_y, y_pred)
cls_losses = [float(l.data[0]) for l in losses]
loss = losses[0]
for l in losses[1:]:
loss += l
(loss * batch_size).backward()
self.optimizer.step()
self.net.global_step += 1
return cls_losses
def losses(self,
ys: torch.FloatTensor,
ys_dist: torch.FloatTensor,
y_preds: Variable):
losses = []
ys = self._var(ys)
if self.hps.needs_dist:
ys_dist = self._var(ys_dist)
for cls_idx, _ in enumerate(self.hps.classes):
y, y_pred = ys[:, cls_idx], y_preds[:, cls_idx]
y_dist = ys_dist[:, cls_idx] if self.hps.needs_dist else None
loss = self._cls_loss(y, y_dist, y_pred)
losses.append(loss)
return losses
def _cls_loss(self, y, y_dist, y_pred):
hps = self.hps
loss = 0.
if hps.log_loss:
loss += self.bce_loss(y_pred, y) * hps.log_loss
if hps.dice_loss:
intersection = (y_pred * y).sum()
uwi = y_pred.sum() + y.sum() # without intersection union
if uwi[0] != 0:
loss += (1 - intersection / uwi) * hps.dice_loss
if hps.jaccard_loss:
intersection = (y_pred * y).sum()
union = y_pred.sum() + y.sum() - intersection
if union[0] != 0:
loss += (1 - intersection / union) * hps.jaccard_loss
if hps.dist_loss:
loss += self.mse_loss(y_pred, y_dist) * hps.dist_loss
if hps.dist_dice_loss:
intersection = (y_pred * y_dist).sum()
uwi = y_pred.sum() + y_dist.sum() # without intersection union
if uwi[0] != 0:
loss += (1 - intersection / uwi) * hps.dist_dice_loss
if hps.dist_jaccard_loss:
intersection = (y_pred * y_dist).sum()
union = y_pred.sum() + y_dist.sum() - intersection
if union[0] != 0:
loss += (1 - intersection / union) * hps.dist_jaccard_loss
loss /= (hps.log_loss + hps.dist_loss + hps.dist_jaccard_loss +
hps.dist_dice_loss + hps.dice_loss + hps.jaccard_loss)
return loss
def train(self, logdir: Path, train_ids: List[str], valid_ids: List[str],
validation: str, no_mp: bool=False, valid_only: bool=False,
model_path: Path=None):
self.tb_logger = tensorboard_logger.Logger(str(logdir))
self.logdir = logdir
train_images = [self.load_image(im_id) for im_id in sorted(train_ids)]
valid_images = None
if model_path:
self.restore_snapshot(model_path)
start_epoch = int(model_path.name.rsplit('-', 1)[1]) + 1
else:
start_epoch = self.restore_last_snapshot(logdir)
square_validation = validation == 'square'
lr = self.hps.lr
self.optimizer = self._init_optimizer(lr)
for n_epoch in range(start_epoch, self.hps.n_epochs):
if self.hps.lr_decay:
if n_epoch % 2 == 0 or n_epoch == start_epoch:
lr = self.hps.lr * self.hps.lr_decay ** n_epoch
self.optimizer = self._init_optimizer(lr)
else:
lim_1, lim_2 = 25, 50
if n_epoch == lim_1 or (
n_epoch == start_epoch and n_epoch > lim_1):
lr = self.hps.lr / 5
self.optimizer = self._init_optimizer(lr)
if n_epoch == lim_2 or (
n_epoch == start_epoch and n_epoch > lim_2):
lr = self.hps.lr / 25
self.optimizer = self._init_optimizer(lr)
logger.info('Starting epoch {}, step {:,}, lr {:.8f}'.format(
n_epoch + 1, self.net.global_step[0], lr))
subsample = 1 if valid_only else 2 # make validation more often
for _ in range(subsample):
if not valid_only:
self.train_on_images(
train_images,
subsample=subsample,
square_validation=square_validation,
no_mp=no_mp)
if valid_images is None:
if square_validation:
s = self.hps.validation_square
valid_images = [
Image(None, im.data[:, :s, :s], im.mask[:, :s, :s])
for im in train_images]
else:
valid_images = [self.load_image(im_id)
for im_id in sorted(valid_ids)]
if valid_images:
self.validate_on_images(valid_images, subsample=1)
if valid_only:
break
self.save_snapshot(n_epoch)
self.tb_logger = None
self.logdir = None
def preprocess_image(self, im_data: np.ndarray) -> np.ndarray:
# mean = np.mean(im_data, axis=(0, 1))
# std = np.std(im_data, axis=(0, 1))
std = np.array([
62.00827863, 46.65453694, 24.7612776, 54.50255552,
13.48645938, 24.76103598, 46.52145521, 62.36207267,
61.54443128, 59.2848377, 85.72930307, 68.62678882,
448.43441827, 634.79572682, 567.21509273, 523.10079804,
530.42441592, 461.8304455, 486.95994727, 478.63768386],
dtype=np.float32)
mean = np.array([
413.62140162, 459.99189475, 325.6722122, 502.57730746,
294.6884949, 325.82117752, 460.0356966, 482.39001004,
413.79388678, 527.57681818, 678.22878001, 529.64198655,
4243.25847972, 4473.47956815, 4178.84648439, 3708.16482918,
2887.49330138, 2589.61786722, 2525.53347208, 2417.23798598],
dtype=np.float32)
scaled = ((im_data - mean) / std).astype(np.float16)
return scaled.transpose([2, 0, 1]) # torch order
def load_image(self, im_id: str) -> Image:
logger.info('Loading {}'.format(im_id))
im_cache = Path('im_cache')
im_cache.mkdir(exist_ok=True)
im_data_path = im_cache.joinpath('{}.data'.format(im_id))
mask_path = im_cache.joinpath('{}.mask'.format(im_id))
if im_data_path.exists():
im_data = np.load(str(im_data_path))
else:
im_data = self.preprocess_image(utils.load_image(im_id))
with im_data_path.open('wb') as f:
np.save(f, im_data)
pre_buffer = self.hps.pre_buffer
if mask_path.exists() and not pre_buffer:
mask = np.load(str(mask_path))
else:
im_size = im_data.shape[1:]
poly_by_type = utils.load_polygons(im_id, im_size)
if pre_buffer:
structures = 2
poly_by_type[structures] = utils.to_multipolygon(
poly_by_type[structures].buffer(pre_buffer))
mask = np.array(
[utils.mask_for_polygons(im_size, poly_by_type[cls + 1])
for cls in range(self.hps.total_classes)],
dtype=np.uint8)
if not pre_buffer:
with mask_path.open('wb') as f:
np.save(f, mask)
if self.hps.n_channels != im_data.shape[0]:
im_data = im_data[:self.hps.n_channels]
return Image(im_id, im_data, mask[self.hps.classes])
def train_on_images(self, train_images: List[Image],
subsample: int=1,
square_validation: bool=False,
no_mp: bool=False):
self.net.train()
b = self.hps.patch_border
s = self.hps.patch_inner
# Extra margin for rotation
m = int(np.ceil((np.sqrt(2) - 1) * (b + s / 2)))
mb = m + b # full margin
mean_area = np.mean(
[im.size[0] * im.size[1] for im in train_images])
n_batches = int(
mean_area / (s + b) / self.hps.batch_size / subsample / 2)
def gen_batch(_):
inputs, outputs, dist_outputs = [], [], []
for _ in range(self.hps.batch_size):
im, (x, y) = self.sample_im_xy(train_images, square_validation)
if random.random() < self.hps.oversample:
for _ in range(1000):
if im.mask[x: x + s, y: y + s].sum():
break
im, (x, y) = self.sample_im_xy(
train_images, square_validation)
patch = im.data[:, x - mb: x + s + mb, y - mb: y + s + mb]
mask = im.mask[:, x - m: x + s + m, y - m: y + s + m]
if self.hps.needs_dist:
dist_mask = im.dist_mask[:, x - m: x + s + m, y - m: y + s + m]
if self.hps.augment_flips:
if random.random() < 0.5:
patch = np.flip(patch, 1)
mask = np.flip(mask, 1)
if self.hps.needs_dist:
dist_mask = np.flip(dist_mask, 1)
if random.random() < 0.5:
patch = np.flip(patch, 2)
mask = np.flip(mask, 2)
if self.hps.needs_dist:
dist_mask = np.flip(dist_mask, 2)
if self.hps.augment_rotations:
assert self.hps.augment_rotations != 1 # old format
angle = (2 * random.random() - 1.) * self.hps.augment_rotations
patch = utils.rotated(patch, angle)
mask = utils.rotated(mask, angle)
if self.hps.needs_dist:
dist_mask = utils.rotated(dist_mask, angle)
if self.hps.augment_channels:
ch_shift = np.random.normal(
1, self.hps.augment_channels, patch.shape[0])
patch = patch * ch_shift[:, None, None]
inputs.append(patch[:, m: -m, m: -m].astype(np.float32))
outputs.append(mask[:, m: -m, m: -m].astype(np.float32))
if self.hps.needs_dist:
dist_outputs.append(
dist_mask[:, m: -m, m: -m].astype(np.float32))
return (torch.from_numpy(np.array(inputs)),
torch.from_numpy(np.array(outputs)),
torch.from_numpy(np.array(dist_outputs)))
self._train_on_feeds(gen_batch, n_batches, no_mp=no_mp)
def sample_im_xy(self, train_images, square_validation=False):
b = self.hps.patch_border
s = self.hps.patch_inner
# Extra margin for rotation
m = int(np.ceil((np.sqrt(2) - 1) * (b + s / 2)))
mb = m + b # full margin
im = random.choice(train_images)
w, h = im.size
min_xy = mb
if square_validation:
min_xy += self.hps.validation_square
return im, (random.randint(min_xy, w - (mb + s)),
random.randint(min_xy, h - (mb + s)))
def _train_on_feeds(self, gen_batch, n_batches: int, no_mp: bool):
losses = [[] for _ in range(self.hps.n_classes)]
jaccard_stats = self._jaccard_stats()
def log():
logger.info(
'Train loss: {loss:.3f}, Jaccard: {jaccard}, '
'speed: {speed:,} patches/s'.format(
loss=np.array(losses)[:, -log_step:].mean(),
speed=int(len(losses[0]) * self.hps.batch_size / (t1 - t00)),
jaccard=self._format_jaccard(jaccard_stats),
))
t0 = t00 = time.time()
log_step = 50
im_log_step = n_batches // log_step * log_step
map_ = (map if no_mp else
partial(utils.imap_fixed_output_buffer, threads=4))
for i, (x, y, dist_y) in enumerate(map_(gen_batch, range(n_batches))):
if losses[0] and i % log_step == 0:
for cls, ls in zip(self.hps.classes, losses):
self._log_value(
'loss/cls-{}'.format(cls), np.mean(ls[-log_step:]))
if self.hps.has_all_classes:
self._log_value(
'loss/cls-mean', np.mean([
l for ls in losses for l in ls[-log_step:]]))
pred_y = self.net(self._var(x)).data.cpu()
self._update_jaccard(jaccard_stats, y.numpy(), pred_y.numpy())
self._log_jaccard(jaccard_stats)
if i == im_log_step:
self._log_im(
x.numpy(), y.numpy(), dist_y.numpy(), pred_y.numpy())
step_losses = self.train_step(x, y, dist_y)
for ls, l in zip(losses, step_losses):
ls.append(l)
t1 = time.time()
dt = t1 - t0
if dt > 10:
log()
jaccard_stats = self._jaccard_stats()
t0 = t1
if losses:
log()
def _jaccard_stats(self):
return {cls: {threshold: [[] for _ in range(3)]
for threshold in self.hps.thresholds}
for cls in self.hps.classes}
def _update_jaccard(self, stats, mask, pred):
assert mask.shape == pred.shape
assert len(mask.shape) in {3, 4}
for cls, tp_fp_fn in stats.items():
cls_idx = self.hps.classes.index(cls)
if len(mask.shape) == 3:
assert mask.shape[0] == self.hps.n_classes
p, y = pred[cls_idx], mask[cls_idx]
else:
assert mask.shape[1] == self.hps.n_classes
p, y = pred[:, cls_idx], mask[:, cls_idx]
for threshold, (tp, fp, fn) in tp_fp_fn.items():
_tp, _fp, _fn = utils.mask_tp_fp_fn(p, y, threshold)
tp.append(_tp)
fp.append(_fp)
fn.append(_fn)
def _log_jaccard(self, stats, prefix=''):
jaccard_by_threshold = {}
for cls, tp_fp_fn in stats.items():
for threshold, (tp, fp, fn) in tp_fp_fn.items():
jaccard = self._jaccard(tp, fp, fn)
self._log_value(
'{}jaccard-{}/cls-{}'.format(prefix, threshold, cls),
jaccard)
jaccard_by_threshold.setdefault(threshold, []).append(jaccard)
if self.hps.has_all_classes:
for threshold, jaccards in jaccard_by_threshold.items():
self._log_value(
'{}jaccard-{}/cls-mean'.format(prefix, threshold),
np.mean(jaccards))
@staticmethod
def _jaccard(tp, fp, fn):
if sum(tp) == 0:
return 0
return sum(tp) / (sum(tp) + sum(fn) + sum(fp))
def _format_jaccard(self, stats):
jaccard_by_threshold = {}
for cls, tp_fp_fn in stats.items():
for threshold, (tp, fp, fn) in tp_fp_fn.items():
jaccard_by_threshold.setdefault(threshold, []).append(
self._jaccard(tp, fp, fn))
return ', '.join(
'at {:.2f}: {:.3f}'.format(threshold, np.mean(cls_jaccards))
for threshold, cls_jaccards in sorted(jaccard_by_threshold.items()))
def _log_im(self, xs: np.ndarray,
ys: np.ndarray, dist_ys: np.ndarray,
pred_ys: np.ndarray):
b = self.hps.patch_border
s = self.hps.patch_inner
border = np.zeros([b * 2 + s, b * 2 + s, 3], dtype=np.float32)
border[b, b:-b, :] = border[-b, b:-b, :] = 1
border[b:-b, b, :] = border[b:-b, -b, :] = 1
border[-b, -b, :] = 1
for i, (x, y, p) in enumerate(zip(xs, ys, pred_ys)):
fname = lambda s: str(self.logdir / ('{:0>3}_{}.png'.format(i, s)))
x = utils.scale_percentile(x.transpose(1, 2, 0))
channels = [x[:, :, :3]] # RGB
if x.shape[-1] == 12:
channels.extend([
x[:, :, 4:7], # M
x[:, :, 3:4], # P (will be shown below RGB)
# 7 and 8 from M are skipped
x[:, :, 9:12], # M
])
elif x.shape[-1] == 20:
channels.extend([
x[:, :, 4:7], # M
x[:, :, 6:9], # M (overlap)
x[:, :, 9:12], # M
x[:, :, 3:4], # P (will be shown below RGB)
x[:, :, 12:15], # A (overlap)
x[:, :, 14:17], # A
x[:, :, 17:], # A
])
channels = [np.maximum(border, ch) for ch in channels]
if len(channels) >= 4:
n = len(channels) // 2
img = np.concatenate(
[np.concatenate(channels[:n], 1),
np.concatenate(channels[n:], 1)], 0)
else:
img = np.concatenate(channels, axis=1)
cv2.imwrite(fname('-x'), img * 255)
for j, (cls, c_y, c_p) in enumerate(zip(self.hps.classes, y, p)):
cv2.imwrite(fname('{}-y'.format(cls)), c_y * 255)
cv2.imwrite(fname('{}-z'.format(cls)), c_p * 255)
if dist_ys.shape[0]:
cv2.imwrite(fname('{}-d'.format(cls)), dist_ys[i, j] * 255)
def _log_value(self, name, value):
self.tb_logger.log_value(name, value, step=self.net.global_step[0])
def validate_on_images(self, valid_images: List[Image],
subsample: int=1):
self.net.eval()
b = self.hps.patch_border
s = self.hps.patch_inner
losses = [[] for _ in range(self.hps.n_classes)]
jaccard_stats = self._jaccard_stats()
for im in valid_images:
w, h = im.size
xs = range(b, w - (b + s), s)
ys = range(b, h - (b + s), s)
all_xy = [(x, y) for x in xs for y in ys]
if subsample != 1:
random.shuffle(all_xy)
all_xy = all_xy[:len(all_xy) // subsample]
for xy_batch in utils.chunks(all_xy, self.hps.batch_size // 2):
inputs = np.array(
[im.data[:, x - b: x + s + b, y - b: y + s + b]
for x, y in xy_batch]).astype(np.float32)
outputs = np.array(
[im.mask[:, x: x + s, y: y + s] for x, y in xy_batch])
outputs = outputs.astype(np.float32)
if self.hps.needs_dist:
dist_outputs = np.array([im.dist_mask[:, x: x + s, y: y + s]
for x, y in xy_batch])
dist_outputs = dist_outputs.astype(np.float32)
else:
dist_outputs = np.array([])
y_pred = self.net(self._var(torch.from_numpy(inputs)))
step_losses = self.losses(
torch.from_numpy(outputs),
torch.from_numpy(dist_outputs),
y_pred)
for ls, l in zip(losses, step_losses):
ls.append(l.data[0])
y_pred_numpy = y_pred.data.cpu().numpy()
self._update_jaccard(jaccard_stats, outputs, y_pred_numpy)
losses = np.array(losses)
logger.info('Valid loss: {:.3f}, Jaccard: {}'.format(
losses.mean(), self._format_jaccard(jaccard_stats)))
for cls, cls_losses in zip(self.hps.classes, losses):
self._log_value('valid-loss/cls-{}'.format(cls), cls_losses.mean())
if self.hps.has_all_classes:
self._log_value('valid-loss/cls-mean', losses.mean())
self._log_jaccard(jaccard_stats, prefix='valid-')
def restore_last_snapshot(self, logdir: Path) -> int:
average = 1 # TODO - pass
for n_epoch in reversed(range(self.hps.n_epochs)):
model_path = self._model_path(logdir, n_epoch)
if model_path.exists():
if average and average > 1:
self.restore_average_snapshot(
logdir, range(n_epoch - average + 1, n_epoch + 1))
else:
self.restore_snapshot(model_path)
return n_epoch + 1
return 0
def restore_snapshot(self, model_path: Path):
logger.info('Loading snapshot {}'.format(model_path))
state = torch.load(str(model_path))
self.net.load_state_dict(state)
def restore_average_snapshot(self, logdir: Path, epochs: Iterable[int]):
epochs = list(epochs)
logger.info('Loading averaged snapshot {} for epochs {}'
.format(logdir, epochs))
states = [torch.load(str(self._model_path(logdir, n)))
for n in epochs]
average_state = {key: sum(s[key] for s in states) / len(states)
for key in states[0].keys()}
self.net.load_state_dict(average_state)
def save_snapshot(self, n_epoch: int):
model_path = self._model_path(self.logdir, n_epoch)
logger.info('Saving snapshot {}'.format(model_path))
torch.save(self.net.state_dict(), str(model_path))
def _model_path(self, logdir: Path, n_epoch: int) -> Path:
return logdir.joinpath('model-{}'.format(n_epoch))
def predict_image_mask(self, im_data: np.ndarray,
rotate: bool=False,
no_edges: bool=False,
average_shifts: bool=True
) -> np.ndarray:
self.net.eval()
c, w, h = im_data.shape
b = self.hps.patch_border
s = self.hps.patch_inner
padded = np.zeros([c, w + 2 * b, h + 2 * b], dtype=im_data.dtype)
padded[:, b:-b, b:-b] = im_data
# mirror on the edges
padded[:, :b, b:-b] = np.flip(im_data[:, :b, :], 1)
padded[:, -b:, b:-b] = np.flip(im_data[:, -b:, :], 1)
padded[:, :, :b] = np.flip(padded[:, :, b: 2 * b], 2)
padded[:, :, -b:] = np.flip(padded[:, :, -2 * b: -b], 2)
step = s // 3 if average_shifts else s
margin = b if no_edges else 0
xs = list(range(margin, w - s - margin, step)) + [w - s - margin]
ys = list(range(margin, h - s - margin, step)) + [h - s - margin]
all_xy = [(x, y) for x in xs for y in ys]
out_shape = [self.hps.n_classes, w, h]
pred_mask = np.zeros(out_shape, dtype=np.float32)
pred_per_pixel = np.zeros(out_shape, dtype=np.int16)
n_rot = 4 if rotate else 1
def gen_batch(xy_batch_):
inputs_ = []
for x, y in xy_batch_:
# shifted by -b to account for padding
patch = padded[:, x: x + s + 2 * b, y: y + s + 2 * b]
inputs_.append(patch)
for i in range(1, n_rot):
inputs_.append(utils.rotated(patch, i * 90))
return xy_batch_, np.array(inputs_, dtype=np.float32)
for xy_batch, inputs in utils.imap_fixed_output_buffer(
gen_batch, tqdm.tqdm(list(
utils.chunks(all_xy, self.hps.batch_size // (4 * n_rot)))),
threads=2):
y_pred = self.net(self._var(torch.from_numpy(inputs)))
for idx, mask in enumerate(y_pred.data.cpu().numpy()):
x, y = xy_batch[idx // n_rot]
i = idx % n_rot
if i:
mask = utils.rotated(mask, -i * 90)
# mask = (mask >= 0.5) + 0.001
pred_mask[:, x: x + s, y: y + s] += mask / n_rot
pred_per_pixel[:, x: x + s, y: y + s] += 1
if not no_edges:
assert pred_per_pixel.min() >= 1
pred_mask /= np.maximum(pred_per_pixel, 1)
return pred_mask
def main():
parser = argparse.ArgumentParser()
arg = parser.add_argument
arg('logdir', help='Path to log directory')
arg('--hps', help='Change hyperparameters in k1=v1,k2=v2 format')
arg('--all', action='store_true',
help='Train on all images without validation')
arg('--validation', choices=['random', 'stratified', 'square', 'custom'],
default='custom', help='validation strategy')
arg('--valid-only', action='store_true')
arg('--only',
help='Train on this image ids only (comma-separated) without validation')
arg('--clean', action='store_true', help='Clean logdir')
arg('--no-mp', action='store_true', help='Disable multiprocessing')
arg('--model-path', type=Path)
args = parser.parse_args()
logdir = Path(args.logdir)
logdir.mkdir(exist_ok=True, parents=True)
if args.clean:
for p in logdir.iterdir():
p.unlink()
if args.hps == 'load':
hps = HyperParams.from_dir(logdir)
else:
hps = HyperParams()
hps.update(args.hps)
logdir.joinpath('hps.json').write_text(
json.dumps(attr.asdict(hps), indent=True, sort_keys=True))
pprint(attr.asdict(hps))
model = Model(hps=hps)
all_im_ids = list(utils.get_wkt_data())
mask_stats = json.loads(Path('cls-stats.json').read_text())
im_area = [(im_id, np.mean([mask_stats[im_id][str(cls)]['area']
for cls in hps.classes]))
for im_id in all_im_ids]
area_by_id = dict(im_area)
valid_ids = []
if args.only:
train_ids = args.only.split(',')
elif args.all:
train_ids = all_im_ids
elif args.validation == 'stratified':
train_ids, valid_ids = [], []
for idx, (im_id, _) in enumerate(
sorted(im_area, key=lambda x: (x[1], x[0]), reverse=True)):
(valid_ids if (idx % 4 == 1) else train_ids).append(im_id)
elif args.validation == 'square':
train_ids = valid_ids = all_im_ids
elif args.validation == 'random':
forced_train_ids = {'6070_2_3', '6120_2_2', '6110_4_0'}
other_ids = list(set(all_im_ids) - forced_train_ids)
train_ids, valid_ids = [[other_ids[idx] for idx in g] for g in next(
ShuffleSplit(random_state=1, n_splits=4).split(other_ids))]
train_ids.extend(forced_train_ids)
elif args.validation == 'custom':
valid_ids = ['6140_3_1', '6110_1_2', '6160_2_1', '6170_0_4', '6100_2_2']
train_ids = [im_id for im_id in all_im_ids if im_id not in valid_ids]
else:
raise ValueError('Unexpected validation kind: {}'.format(args.validation))
if args.valid_only:
train_ids = []
train_area_by_class, valid_area_by_class = [
{cls: np.mean(
[mask_stats[im_id][str(cls)]['area'] for im_id in im_ids])
for cls in hps.classes}
for im_ids in [train_ids, valid_ids]]
logger.info('Train: {}'.format(' '.join(sorted(train_ids))))
logger.info('Valid: {}'.format(' '.join(sorted(valid_ids))))
logger.info('Train area mean: {:.6f}'.format(
np.mean([area_by_id[im_id] for im_id in valid_ids])))
logger.info('Train area by class: {}'.format(
' '.join('{}: {:.6f}'.format(cls, train_area_by_class[cls])
for cls in hps.classes)))
logger.info('Valid area mean: {:.6f}'.format(
np.mean([area_by_id[im_id] for im_id in train_ids])))
logger.info('Valid area by class: {}'.format(
' '.join('cls-{}: {:.6f}'.format(cls, valid_area_by_class[cls])
for cls in hps.classes)))
model.train(logdir=logdir,
train_ids=train_ids,
valid_ids=valid_ids,
validation=args.validation,
no_mp=args.no_mp,
valid_only=args.valid_only,
model_path=args.model_path
)
if __name__ == '__main__':
main()