-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtest_zy3bh_tlcnetU.py
205 lines (170 loc) · 7.31 KB
/
test_zy3bh_tlcnetU.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
'''
predict on images
'''
import os
import yaml
import shutil
import torch
import random
import argparse
import numpy as np
from ptsemseg.models import get_model
from ptsemseg.utils import get_logger
from tensorboardX import SummaryWriter
from ptsemseg.loader.diy_dataset import dataloaderbh
import sklearn.metrics
import matplotlib.pyplot as plt
import tifffile as tif
def main(cfg, writer, logger):
# Setup device
device = torch.device(cfg["training"]["device"])
# Setup Dataloader
data_path = cfg["data"]["path"]
n_classes = cfg["data"]["n_class"]
n_maxdisp = cfg["data"]["n_maxdisp"]
batch_size = cfg["training"]["batch_size"]
epochs = cfg["training"]["epochs"]
learning_rate = cfg["training"]["learning_rate"]
patchsize = cfg["data"]["img_rows"]
_, _, valimg, vallab = dataloaderbh(data_path)
# Setup Model
model = get_model(cfg["model"], n_maxdisp=n_maxdisp, n_classes=n_classes).to(device)
if torch.cuda.device_count() > 1:
model = torch.nn.DataParallel(model, device_ids=range(torch.cuda.device_count()))
#resume = cfg["training"]["resume"]
resume = r'runs\tlcnetu_zy3bh\V1\finetune_298.tar'
if os.path.isfile(resume):
print("=> loading checkpoint '{}'".format(resume))
checkpoint = torch.load(resume)
model.load_state_dict(checkpoint['state_dict'])
# optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at resume")
print("=> Will start from scratch.")
model.eval()
for idx, imgpath in enumerate(valimg[0:20]):
name = os.path.basename(vallab[idx])
respath = os.path.join(cfg["savepath"],'pred'+name)
y_true = tif.imread(vallab[idx])
y_true = y_true.astype(np.int16)*3
# random crop: test and train is the same
mux = tif.imread(imgpath[0])/10000 # convert to surface reflectance (SR): 0-1
tlc = tif.imread(imgpath[1])/10000 # stretch to 0-1
offset = mux.shape[0] - patchsize
x1 = random.randint(0, offset)
y1 = random.randint(0, offset)
mux = mux[x1:x1 + patchsize, y1:y1 + patchsize, :]
tlc = tlc[x1:x1 + patchsize, y1:y1 + patchsize, :]
y_true = y_true[x1:x1 + patchsize, y1:y1 + patchsize]
img = np.concatenate((mux, tlc), axis=2)
img[img > 1] = 1 # ensure data range is 0-1
# remove tlc
# img[:,:,4:] = 0
img = img.transpose((2, 0, 1))
img = np.expand_dims(img, 0)
img = torch.from_numpy(img).float()
y_res = model(img.to(device))
y_pred = y_res[0] # height
y_pred = y_pred.cpu().detach().numpy()
y_pred = np.squeeze(y_pred)
rmse = myrmse(y_true, y_pred)
y_seg = y_res[1] # seg
y_seg = y_seg.cpu().detach().numpy()
y_seg = np.argmax(y_seg.squeeze(), axis=0) # C H W=> H W
precision, recall, f1score = metricsperclass(y_true, y_seg, value=1) #
print('rmse: %.3f, segerror: ua %.3f, pa %.3f, f1 %.3f'%(rmse, precision, recall, f1score))
# tif.imsave((os.path.join(cfg["savepath"],'mux'+name)), mux)
# tif.imsave( (os.path.join(cfg["savepath"], 'ref' + name)), y_true)
# tif.imsave( (os.path.join(cfg["savepath"], 'pred' + name)), y_pred)
tif.imsave((os.path.join(cfg["savepath"], 'seg' + name)), y_seg.astype(np.uint8))
#
# color encode: change to the
# get color info
# _, color_values = get_colored_info('class_dict.csv')
# prediction = color_encode(y_pred, color_values)
# label = color_encode(y_true, color_values)
# plt.subplot(131)
# plt.title('Image', fontsize='large', fontweight='bold')
# plt.imshow(mux[:, :, 0:3]/1000)
# plt.subplot(132)
# plt.title('Ref', fontsize='large', fontweight='bold')
# plt.imshow(y_true)
# # plt.subplot(143)
# # plt.title('Pred', fontsize='large', fontweight='bold')
# # plt.imshow(prediction)
# plt.subplot(133)
# plt.title('Pred %.3f'%scores, fontsize='large', fontweight='bold')
# plt.imshow(y_pred)
# plt.savefig(os.path.join(cfg["savepath"], 'fig'+name))
# plt.close()
def gray2rgb(image):
res=np.zeros((image.shape[0], image.shape[1], 3))
res[ :, :, 0] = image.copy()
res[ :, :, 1] = image.copy()
res[ :, :, 2] = image.copy()
return res
def metrics(y_true, y_pred, ignorevalue=0):
y_true = y_true.flatten()
y_pred = y_pred.flatten()
maskid = np.where(y_true!=ignorevalue)
y_true = y_true[maskid]
y_pred = y_pred[maskid]
accuracy = sklearn.metrics.accuracy_score(y_true, y_pred)
kappa = sklearn.metrics.cohen_kappa_score(y_true, y_pred)
f1_micro = sklearn.metrics.f1_score(y_true, y_pred, average="micro")
f1_macro = sklearn.metrics.f1_score(y_true, y_pred, average="macro")
f1_weighted = sklearn.metrics.f1_score(y_true, y_pred, average="weighted")
recall_micro = sklearn.metrics.recall_score(y_true, y_pred, average="micro")
recall_macro = sklearn.metrics.recall_score(y_true, y_pred, average="macro")
recall_weighted = sklearn.metrics.recall_score(y_true, y_pred, average="weighted")
precision_micro = sklearn.metrics.precision_score(y_true, y_pred, average="micro")
precision_macro = sklearn.metrics.precision_score(y_true, y_pred, average="macro")
precision_weighted = sklearn.metrics.precision_score(y_true, y_pred, average="weighted")
return dict(
accuracy=accuracy,
kappa=kappa,
f1_micro=f1_micro,
f1_macro=f1_macro,
f1_weighted=f1_weighted,
recall_micro=recall_micro,
recall_macro=recall_macro,
recall_weighted=recall_weighted,
precision_micro=precision_micro,
precision_macro=precision_macro,
precision_weighted=precision_weighted,
)
def myrmse(y_true, ypred):
diff=y_true.flatten()-ypred.flatten()
return np.sqrt(np.mean(diff*diff))
def metricsperclass(y_true, y_pred, value):
y_pred = y_pred.flatten()
y_true = np.where(y_true>0, np.ones_like(y_true), np.zeros_like(y_true)).flatten()
tp=len(np.where((y_true==value) & (y_pred==value))[0])
tn=len(np.where(y_true==value)[0])
fn = len(np.where(y_pred == value)[0])
precision = tp/(1e-10+fn)
recall = tp/(1e-10+tn)
f1score = 2*precision*recall/(precision+recall+1e-10)
return precision, recall, f1score
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="config")
parser.add_argument(
"--config",
nargs="?",
type=str,
default="configs/tlcnetu_zy3bh.yml",
help="Configuration file to use",
)
args = parser.parse_args()
with open(args.config) as fp:
cfg = yaml.load(fp)
#run_id = random.randint(1, 100000)
logdir = os.path.join("runs", os.path.basename(args.config)[:-4], "V1")
writer = SummaryWriter(log_dir=logdir)
print("RUNDIR: {}".format(logdir))
shutil.copy(args.config, logdir)
logger = get_logger(logdir)
logger.info("Let the games begin")
main(cfg, writer, logger)