Skip to content

Commit e23cab5

Browse files
author
cclauss
authored
# -*- coding: utf-8 -*-
1 parent 202ff3b commit e23cab5

File tree

1 file changed

+10
-8
lines changed

1 file changed

+10
-8
lines changed

LogisticRegression/LogisticRegression_scikit-learn.py

Lines changed: 10 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -1,3 +1,5 @@
1+
# -*- coding: utf-8 -*-
2+
13
from sklearn.linear_model import LogisticRegression
24
from sklearn.preprocessing import StandardScaler
35
from sklearn.cross_validation import train_test_split
@@ -8,32 +10,32 @@ def logisticRegression():
810
X = data[:,0:-1]
911
y = data[:,-1]
1012

11-
# ����Ϊѵ�����Ͳ��Լ�
13+
# 划分为训练集和测试集
1214
x_train,x_test,y_train,y_test = train_test_split(X,y,test_size=0.2)
1315

14-
# ��һ��
16+
# 归一化
1517
scaler = StandardScaler()
1618
scaler.fit(x_train)
1719
x_train = scaler.fit_transform(x_train)
1820
x_test = scaler.fit_transform(x_test)
1921

20-
#�߼��ع�
22+
# 逻辑回归
2123
model = LogisticRegression()
2224
model.fit(x_train,y_train)
2325

24-
# Ԥ��
26+
# 预测
2527
predict = model.predict(x_test)
2628
right = sum(predict == y_test)
2729

28-
predict = np.hstack((predict.reshape(-1,1),y_test.reshape(-1,1))) # ��Ԥ��ֵ����ʵֵ����һ�飬�ù۲�
30+
predict = np.hstack((predict.reshape(-1,1),y_test.reshape(-1,1))) # 将预测值和真实值放在一块,好观察
2931
print(predict)
30-
print('���Լ�׼ȷ�ʣ�%f%%'%(right*100.0/predict.shape[0])) #�����ڲ��Լ��ϵ�׼ȷ��
32+
print('测试集准确率:%f%%'%(right*100.0/predict.shape[0])) # 计算在测试集上的准确度
3133

32-
# ����txt��csv�ļ�
34+
# 加载txt和csv文件
3335
def loadtxtAndcsv_data(fileName,split,dataType):
3436
return np.loadtxt(fileName,delimiter=split,dtype=dataType)
3537

36-
# ����npy�ļ�
38+
# 加载npy文件
3739
def loadnpy_data(fileName):
3840
return np.load(fileName)
3941

0 commit comments

Comments
 (0)