forked from facebookresearch/jepa
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
67 lines (52 loc) · 1.81 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
import argparse
import multiprocessing as mp
import pprint
import yaml
from src.utils.distributed import init_distributed
from evals.scaffold import main as eval_main
parser = argparse.ArgumentParser()
parser.add_argument(
'--fname', type=str,
help='name of config file to load',
default='configs.yaml')
parser.add_argument(
'--devices', type=str, nargs='+', default=['cuda:0'],
help='which devices to use on local machine')
def process_main(rank, fname, world_size, devices):
import os
os.environ['CUDA_VISIBLE_DEVICES'] = str(devices[rank].split(':')[-1])
import logging
logging.basicConfig()
logger = logging.getLogger()
if rank == 0:
logger.setLevel(logging.INFO)
else:
logger.setLevel(logging.ERROR)
logger.info(f'called-params {fname}')
# Load config
params = None
with open(fname, 'r') as y_file:
params = yaml.load(y_file, Loader=yaml.FullLoader)
logger.info('loaded params...')
pp = pprint.PrettyPrinter(indent=4)
pp.pprint(params)
# Init distributed (access to comm between GPUS on same machine)
world_size, rank = init_distributed(rank_and_world_size=(rank, world_size))
logger.info(f'Running... (rank: {rank}/{world_size})')
# Launch the eval with loaded config
eval_main(params['eval_name'], args_eval=params)
if __name__ == '__main__':
args = parser.parse_args()
num_gpus = len(args.devices)
mp.set_start_method('spawn')
for rank in range(num_gpus):
mp.Process(
target=process_main,
args=(rank, args.fname, num_gpus, args.devices)
).start()