Skip to content

To make those tutorials, I referred to several tutorials including open courses, YouTube, and Books.

Notifications You must be signed in to change notification settings

leejaymin/TensorFlowLecture

Repository files navigation

TensorFlowLecture

본 코드는 김성훈 교수님의 강의와 TensorFlow Korea를 보면서 작성한 것입니다.
이론적인 정리 내용은 작성자의 블로그에 있습니다.
작성자 블로그: RUL

개발환경

  • Ubuntu 16.04
  • Pycharm pro and Jupyter Notebook
  • Python 2.7 and 3.5 (compatible code)
  • Tensor Flow r0.12_RC01

목차

Numpy, Scipy 코드

TensorFlow 코드

  1. Basic Example
  2. Linear Regression
  3. Logistic Classification
  4. Multiple Perceptron for XOR Problem
  5. MNIST set
    • Softmax classification
    • DNN with ReLU
    • DNN with Dropout and xavier_init
  6. CNN
  7. Early Stop and Index Shuffling
  8. TensorBoard
  9. Save and Restore

참고자료

  • Coursera, Machine Learning (Andrew ng): URL
  • Python으로 구현된 코세라 숙제 코드: URL
  • 김성훈 교수님 강의 페이지: URL
  • 텐서플로 코리아: URL
  • 한국인지과학협회 딥러닝 튜토리얼: URL

About

To make those tutorials, I referred to several tutorials including open courses, YouTube, and Books.

Resources

Stars

Watchers

Forks

Packages

No packages published