|
| 1 | +# ------------------------------------------------------------------------------ |
| 2 | +# Copyright (c) Microsoft |
| 3 | +# Licensed under the MIT License. |
| 4 | + |
| 5 | +# Detail: test on a specific video (provide init bbox [optional] and video file) |
| 6 | +# ------------------------------------------------------------------------------ |
| 7 | + |
| 8 | +import _init_paths |
| 9 | +import os |
| 10 | +import cv2 |
| 11 | +import torch |
| 12 | +import random |
| 13 | +import argparse |
| 14 | +import numpy as np |
| 15 | + |
| 16 | +try: |
| 17 | + from torch2trt import TRTModule |
| 18 | +except: |
| 19 | + print('Warning: TensorRT is not successfully imported') |
| 20 | + |
| 21 | +import models.models as models |
| 22 | + |
| 23 | +from os.path import exists, join, dirname, realpath |
| 24 | +from tracker.ocean import Ocean |
| 25 | +from tracker.online import ONLINE |
| 26 | +from easydict import EasyDict as edict |
| 27 | +from utils.utils import load_pretrain, cxy_wh_2_rect, get_axis_aligned_bbox, load_dataset, poly_iou |
| 28 | + |
| 29 | +from eval_toolkit.pysot.datasets import VOTDataset |
| 30 | +from eval_toolkit.pysot.evaluation import EAOBenchmark |
| 31 | +from tqdm import tqdm |
| 32 | + |
| 33 | + |
| 34 | +def parse_args(): |
| 35 | + """ |
| 36 | + args for fc testing. |
| 37 | + """ |
| 38 | + parser = argparse.ArgumentParser(description='PyTorch SiamFC Tracking Test') |
| 39 | + parser.add_argument('--arch', default='Ocean', type=str, help='backbone architecture') |
| 40 | + parser.add_argument('--resume', default='snapshot/OceanV19on.pth', type=str, help='pretrained model') |
| 41 | + parser.add_argument('--video', default='./dataset/soccer1.mp4', type=str, help='video file path') |
| 42 | + parser.add_argument('--online', default=True, type=bool, help='use online or offline model') |
| 43 | + parser.add_argument('--save', default=True, type=bool, help='save pictures') |
| 44 | + parser.add_argument('--init_bbox', default=None, help='bbox in the first frame None or [lx, ly, w, h]') |
| 45 | + args = parser.parse_args() |
| 46 | + |
| 47 | + return args |
| 48 | + |
| 49 | + |
| 50 | +def track_video(siam_tracker, online_tracker, siam_net, video_path, init_box=None, args=None): |
| 51 | + |
| 52 | + assert os.path.isfile(video_path), "please provide a valid video file" |
| 53 | + |
| 54 | + video_name = video_path.split('/')[-1] |
| 55 | + video_name = video_name.split('.')[0] |
| 56 | + save_path = os.path.join('vis', video_name) |
| 57 | + if not os.path.exists(save_path): |
| 58 | + os.makedirs(save_path) |
| 59 | + |
| 60 | + cap = cv2.VideoCapture(video_path) |
| 61 | + display_name = 'Video: {}'.format(video_path.split('/')[-1]) |
| 62 | + cv2.namedWindow(display_name, cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) |
| 63 | + cv2.resizeWindow(display_name, 960, 720) |
| 64 | + success, frame = cap.read() |
| 65 | + cv2.imshow(display_name, frame) |
| 66 | + |
| 67 | + if success is not True: |
| 68 | + print("Read failed.") |
| 69 | + exit(-1) |
| 70 | + |
| 71 | + # init |
| 72 | + count = 0 |
| 73 | + |
| 74 | + if init_box is not None: |
| 75 | + lx, ly, w, h = init_box |
| 76 | + target_pos = np.array([lx + w/2, ly + h/2]) |
| 77 | + target_sz = np.array([w, h]) |
| 78 | + |
| 79 | + state = siam_tracker.init(frame, target_pos, target_sz, siam_net) # init tracker |
| 80 | + rgb_im = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) |
| 81 | + |
| 82 | + if args.online: |
| 83 | + online_tracker.init(frame, rgb_im, siam_net, target_pos, target_sz, True, dataname='VOT2019', resume=args.resume) |
| 84 | + |
| 85 | + else: |
| 86 | + while True: |
| 87 | + |
| 88 | + frame_disp = frame.copy() |
| 89 | + |
| 90 | + cv2.putText(frame_disp, 'Select target ROI and press ENTER', (20, 30), cv2.FONT_HERSHEY_COMPLEX_SMALL, |
| 91 | + 1, (0, 0, 255), 1) |
| 92 | + |
| 93 | + lx, ly, w, h = cv2.selectROI(display_name, frame_disp, fromCenter=False) |
| 94 | + target_pos = np.array([lx + w / 2, ly + h / 2]) |
| 95 | + target_sz = np.array([w, h]) |
| 96 | + |
| 97 | + state = siam_tracker.init(frame_disp, target_pos, target_sz, siam_net) # init tracker |
| 98 | + rgb_im = cv2.cvtColor(frame_disp, cv2.COLOR_BGR2RGB) |
| 99 | + |
| 100 | + if args.online: |
| 101 | + online_tracker.init(frame_disp, rgb_im, siam_net, target_pos, target_sz, True, dataname='VOT2019', resume=args.resume) |
| 102 | + |
| 103 | + break |
| 104 | + |
| 105 | + while True: |
| 106 | + ret, frame = cap.read() |
| 107 | + |
| 108 | + if frame is None: |
| 109 | + return |
| 110 | + |
| 111 | + frame_disp = frame.copy() |
| 112 | + rgb_im = cv2.cvtColor(frame_disp, cv2.COLOR_BGR2RGB) |
| 113 | + |
| 114 | + # Draw box |
| 115 | + if args.online: |
| 116 | + state = online_tracker.track(frame_disp, rgb_im, siam_tracker, state) |
| 117 | + else: |
| 118 | + state = siam_tracker.track(state, frame_disp) |
| 119 | + |
| 120 | + location = cxy_wh_2_rect(state['target_pos'], state['target_sz']) |
| 121 | + x1, y1, x2, y2 = int(location[0]), int(location[1]), int(location[0] + location[2]), int(location[1] + location[3]) |
| 122 | + |
| 123 | + cv2.rectangle(frame_disp, (x1, y1), (x2, y2), (0, 255, 0), 5) |
| 124 | + |
| 125 | + font_color = (0, 0, 0) |
| 126 | + cv2.putText(frame_disp, 'Tracking!', (20, 30), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, |
| 127 | + font_color, 1) |
| 128 | + cv2.putText(frame_disp, 'Press r to reset', (20, 55), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, |
| 129 | + font_color, 1) |
| 130 | + cv2.putText(frame_disp, 'Press q to quit', (20, 80), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, |
| 131 | + font_color, 1) |
| 132 | + |
| 133 | + # Display the resulting frame |
| 134 | + cv2.imshow(display_name, frame_disp) |
| 135 | + |
| 136 | + if args.save: |
| 137 | + save_name = os.path.join(save_path, '{:04d}.jpg'.format(count)) |
| 138 | + cv2.imwrite(save_name, frame_disp) |
| 139 | + count += 1 |
| 140 | + |
| 141 | + key = cv2.waitKey(1) |
| 142 | + # key = None |
| 143 | + if key == ord('q'): |
| 144 | + break |
| 145 | + elif key == ord('r'): |
| 146 | + ret, frame = cap.read() |
| 147 | + frame_disp = frame.copy() |
| 148 | + |
| 149 | + cv2.putText(frame_disp, 'Select target ROI and press ENTER', (20, 30), cv2.FONT_HERSHEY_COMPLEX_SMALL, |
| 150 | + 1.5, |
| 151 | + (0, 0, 0), 1) |
| 152 | + |
| 153 | + cv2.imshow(display_name, frame_disp) |
| 154 | + lx, ly, w, h = cv2.selectROI(display_name, frame_disp, fromCenter=False) |
| 155 | + target_pos = np.array([lx + w / 2, ly + h / 2]) |
| 156 | + target_sz = np.array([w, h]) |
| 157 | + |
| 158 | + state = siam_tracker.init(frame_disp, target_pos, target_sz, siam_net) # init tracker |
| 159 | + rgb_im = cv2.cvtColor(frame_disp, cv2.COLOR_BGR2RGB) |
| 160 | + |
| 161 | + if args.online: |
| 162 | + online_tracker.init(frame_disp, rgb_im, siam_net, target_pos, target_sz, True, dataname='VOT2019', resume=args.resume) |
| 163 | + |
| 164 | + # When everything done, release the capture |
| 165 | + cap.release() |
| 166 | + cv2.destroyAllWindows() |
| 167 | + |
| 168 | + |
| 169 | +def main(): |
| 170 | + args = parse_args() |
| 171 | + |
| 172 | + # prepare model (SiamRPN or SiamFC) |
| 173 | + |
| 174 | + # prepare tracker |
| 175 | + info = edict() |
| 176 | + info.arch = args.arch |
| 177 | + info.dataset = 'VOT2019' |
| 178 | + info.TRT = 'TRT' in args.arch |
| 179 | + info.epoch_test = False |
| 180 | + |
| 181 | + siam_info = edict() |
| 182 | + siam_info.arch = args.arch |
| 183 | + siam_info.dataset = 'VOT2019' |
| 184 | + siam_info.online = args.online |
| 185 | + siam_info.epoch_test = False |
| 186 | + siam_info.TRT = 'TRT' in args.arch |
| 187 | + |
| 188 | + siam_info.align = False |
| 189 | + |
| 190 | + if siam_info.TRT: |
| 191 | + siam_info.align = False |
| 192 | + |
| 193 | + siam_tracker = Ocean(siam_info) |
| 194 | + siam_net = models.__dict__[args.arch](align=siam_info.align, online=args.online) |
| 195 | + print('===> init Siamese <====') |
| 196 | + |
| 197 | + if not siam_info.TRT: |
| 198 | + siam_net = load_pretrain(siam_net, args.resume) |
| 199 | + else: |
| 200 | + print("tensorrt toy model: not loading checkpoint") |
| 201 | + siam_net.eval() |
| 202 | + siam_net = siam_net.cuda() |
| 203 | + |
| 204 | + if siam_info.TRT: |
| 205 | + print('===> load model from TRT <===') |
| 206 | + print('===> please ignore the warning information of TRT <===') |
| 207 | + print('===> We only provide a toy demo for TensorRT. There are some operations are not supported well.<===') |
| 208 | + print('===> If you wang to test on benchmark, please us Pytorch version. <===') |
| 209 | + print('===> The tensorrt code will be contingously optimized (with the updating of official TensorRT.)<===') |
| 210 | + trtNet = reloadTRT() |
| 211 | + siam_net.tensorrt_init(trtNet) |
| 212 | + |
| 213 | + if args.online: |
| 214 | + online_tracker = ONLINE(info) |
| 215 | + else: |
| 216 | + online_tracker = None |
| 217 | + |
| 218 | + print('[*] ======= Track video with {} ======='.format(args.arch)) |
| 219 | + |
| 220 | + # check init box is list or not |
| 221 | + if not isinstance(args.init_bbox, list) and args.init_bbox is not None: |
| 222 | + args.init_bbox = list(eval(args.init_bbox)) |
| 223 | + else: |
| 224 | + args.init_bbox = None |
| 225 | + print('===> please draw a box with your mouse <====') |
| 226 | + |
| 227 | + track_video(siam_tracker, online_tracker, siam_net, args.video, init_box=args.init_bbox, args=args) |
| 228 | + |
| 229 | +if __name__ == '__main__': |
| 230 | + main() |
0 commit comments