Skip to content

Commit 1d2160c

Browse files
committed
load proper weights
1 parent ce1845f commit 1d2160c

File tree

1 file changed

+4
-2
lines changed

1 file changed

+4
-2
lines changed

rasa_nlu/featurizers/bert_featurizer.py

Lines changed: 4 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -55,7 +55,7 @@ def __init__(self, component_config=None):
5555

5656
self.partial_processing_pipeline = None
5757
self.partial_processing_context = None
58-
self.layer_indexes = [-1]
58+
self.layer_indexes = [-2]
5959
bert_config = modeling.BertConfig.from_json_file("/Users/oakela/Documents/RASA/bert/uncased_L-24_H-1024_A-16/bert_config.json")
6060
self.tokenizer = tokenization.FullTokenizer(vocab_file="/Users/oakela/Documents/RASA/bert/uncased_L-24_H-1024_A-16/vocab.txt", do_lower_case=True)
6161
is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2
@@ -66,7 +66,7 @@ def __init__(self, component_config=None):
6666
per_host_input_for_training=is_per_host))
6767
model_fn = model_fn_builder(
6868
bert_config=bert_config,
69-
init_checkpoint="/Users/oakela/Documents/RASA/bert/uncased_L-24_H-1024_A-16/bert_model.ckpt.index",
69+
init_checkpoint="/Users/oakela/Documents/RASA/bert/uncased_L-24_H-1024_A-16/bert_model.ckpt",
7070
layer_indexes=self.layer_indexes,
7171
use_tpu=False,
7272
use_one_hot_embeddings=False)
@@ -83,6 +83,7 @@ def train(self, training_data, config, **kwargs):
8383
fs = create_features(messages, self.estimator, self.tokenizer, self.layer_indexes)
8484
features = []
8585
for x in fs:
86+
# features.append(np.array(x['features'][0]['layers'][0]['values']))
8687
feats = [y['layers'][0]['values'] for y in x['features'][1:-1]]
8788
features.append(np.average(feats, axis=0))
8889
for i, message in enumerate(training_data.intent_examples):
@@ -100,4 +101,5 @@ def _set_bert_features(self, message):
100101
fs = create_features([message.text], self.estimator, self.tokenizer, self.layer_indexes)
101102
feats = [x['layers'][0]['values'] for x in fs[0]['features'][1:-1]]
102103
features = np.average(feats, axis=0)
104+
# features = np.array(fs[0]['features'][0]['layers'][0]['values'])
103105
message.set("text_features", features)

0 commit comments

Comments
 (0)