forked from sitzikbs/DeepFit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_curvatures.py
187 lines (150 loc) · 7.85 KB
/
evaluate_curvatures.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# evaluation_curvatures.py run curvature estimation evaluation
# Author:Itzik Ben Sabat sitzikbs[at]gmail.com
# If you use this code,see LICENSE.txt file and cite our work
import os
import numpy as np
import pickle
import utils
import argparse
# python evaluate_curvatures.py --dataset_list testset_temp --sparse_patches=1
def l2_norm(v):
norm_v = np.sqrt(np.sum(np.square(v), axis=1))
return norm_v
def map_curvatures1(current_curvatures):
"""
map_curvatures maps the curvature values of the input to be minimum and maximum and disregards sign (upper triangle)
:param current_curvatures: B x 2 principal curvature values to map
:return: B x 2 mapped curvature values
"""
# maps the curvatures to unoriented maximum and minimum curvatures
mapped_curvatures = np.zeros_like(current_curvatures)
min_c = current_curvatures.min(axis=1)
max_c = current_curvatures.max(axis=1)
mapped_curvatures[:, 0] = min_c
mapped_curvatures[:, 1] = max_c
idxs = mapped_curvatures[:, 1] < -mapped_curvatures[:, 0]
mapped_curvatures[idxs, 0] = -max_c[idxs]
mapped_curvatures[idxs, 1] = -min_c[idxs]
return mapped_curvatures
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
BASELINE_DIR = os.path.dirname(os.path.abspath(__file__))
parser = argparse.ArgumentParser()
parser.add_argument('--data_path', type=str, default='/home/sitzikbs/Datasets/pcpnet/', help='Relative path to data directory')
parser.add_argument('--sparse_patches', default=True, help='sparse patches indicator, choose True for pcpnet evaluation'
',False does not apply if test was not full')
parser.add_argument('--results_path', default='./log/baselines/DeepFit/results/', help='path to trained model')
parser.add_argument('--map_curvatures', type=int, default=True, help='map curvatures indicator')
parser.add_argument('--dataset_list', type=str, nargs='+',
default=['testset_no_noise', 'testset_low_noise', 'testset_med_noise', 'testset_high_noise',
'testset_vardensity_striped', 'testset_vardensity_gradient'],
help='choose file lists to run evaluation on')
FLAGS = parser.parse_args()
MAP_CURVATURES = FLAGS.map_curvatures
sparse_patches = FLAGS.sparse_patches
dataset_list = FLAGS.dataset_list
PC_PATH = os.path.join(BASE_DIR, FLAGS.data_path)
results_path = os.path.join(BASE_DIR, FLAGS.results_path)
for dataset in dataset_list:
curv_results_path = results_path # for older runs
curv_gt_filenames = PC_PATH + dataset + '.txt'
curvatures_gt_path = PC_PATH
# get all shape names in the dataset
shape_names = []
with open(curv_gt_filenames) as f:
shape_names = f.readlines()
shape_names = [x.strip() for x in shape_names]
shape_names = list(filter(None, shape_names))
summary_dir_name = 'summary/'
if MAP_CURVATURES:
summary_dir_name = 'summary_mapped/'
outdir = os.path.join(curv_results_path, summary_dir_name)
if not os.path.exists(outdir):
os.makedirs(outdir)
LOG_FOUT = open(os.path.join(outdir, dataset + '_curv_evaluation_results.txt'), 'w')
def log_string(out_str):
LOG_FOUT.write(out_str + '\n')
LOG_FOUT.flush()
print(out_str)
experts_exist = False
rms_regular = []
true_rms_L = []
rms_L = []
rms_tanh = []
for i, shape in enumerate(shape_names):
print('Processing ' + shape + '...')
# load the data
points = np.loadtxt(os.path.join(curvatures_gt_path, shape + '.xyz')).astype('float32')
curvatures_gt = np.loadtxt(os.path.join(curvatures_gt_path, shape + '.curv')).astype('float32')
curvatures_results = np.loadtxt(os.path.join(curv_results_path, shape + '.curv')).astype('float32')
points_idx = np.loadtxt(os.path.join(curvatures_gt_path, shape + '.pidx')).astype('int')
normals_gt = np.loadtxt(os.path.join(curvatures_gt_path, shape + '.normals')).astype('float32')
normals_results = np.loadtxt(os.path.join(curv_results_path, shape + '.normals')).astype('float32')
if os.path.exists(os.path.join(curv_results_path, shape + '.experts')):
experts_exist = True
experts = np.loadtxt(os.path.join(curv_results_path, shape + '.experts'))
params = pickle.load(open(results_path + 'parameters.p', "rb"))
n_experts = params.n_experts
n_points = points.shape[0]
n_curvatures = curvatures_results.shape[0]
if sparse_patches:
points = points[points_idx, :]
curvatures_gt = curvatures_gt[points_idx, :]
normals_gt = normals_gt[points_idx, :]
normals_results = normals_results[points_idx, :]
if n_points != n_curvatures:
sparse_curvatures = True
else:
sparse_curvatures = False
if sparse_patches and not sparse_curvatures:
curvatures_results = curvatures_results[points_idx, :]
if (not sparse_patches) and sparse_curvatures:
raise ValueError('Inconsistent sparse patches request - rerun test with sparse_patches set to False')
# jet stored curvatures with an additional value - this is to remove it
if curvatures_results.shape[1] > 2:
curvatures_results = curvatures_results[:, 0:2]
# flip the sign according to the normal
sign = np.sign(np.sum(normals_results * normals_gt, axis=1))
curvatures_results = curvatures_results * np.tile(sign, [2, 1]).transpose()
if MAP_CURVATURES: #first column maximum, second minimum
curvatures_results = map_curvatures(curvatures_results) # for pcpnet
# Not oriented rms
diff_c = curvatures_results - curvatures_gt
rms_regular_shape = np.sqrt(np.nanmean(np.square(diff_c), axis=0))
true_rms_L_shape = np.sqrt(np.nanmean(np.square(diff_c/np.maximum(np.abs(curvatures_gt), np.ones_like(curvatures_gt))), axis=0))
rms_L_shape = np.nanmean(np.abs((diff_c / np.maximum(np.abs(curvatures_gt), np.ones_like(curvatures_gt)))),
axis=0)
expanssion_coeff = 0.1
rms_tanh_shape = np.sqrt(np.nanmean(
np.square(np.tanh(expanssion_coeff * curvatures_results) - np.tanh(expanssion_coeff * curvatures_gt)),
axis=0))
# error metrics
rms_regular.append(rms_regular_shape)
true_rms_L.append(true_rms_L_shape)
rms_L.append(rms_L_shape)
rms_tanh.append(rms_tanh_shape)
avg_rms_regular = np.mean(rms_regular, axis=0)
avg_true_rms_L = np.mean(true_rms_L, axis=0)
avg_rms_L = np.mean(rms_L, axis=0)
avg_rms_tanh = np.mean(rms_tanh, axis=0)
# avg_rms_o = np.mean(rms_o)
rms_regular = np.array(rms_regular)
true_rms_L = np.array(true_rms_L)
rms_L = np.array(rms_L)
rms_tanh = np.array(rms_tanh)
log_string('k1 regular RMS per shape: ' + str(rms_regular[:, 0]))
log_string('k2 regular RMS per shape: ' + str(rms_regular[:, 1]))
log_string('k1 regular average RMS: ' + str(avg_rms_regular[0]))
log_string('k2 regular average RMS: ' + str(avg_rms_regular[1]) + '\n')
log_string('k1 L RMS per shape: ' + str(rms_L[:, 0]))
log_string('k2 L RMS per shape: ' + str(rms_L[:, 1]))
log_string('k1 L average RMS: ' + str(avg_rms_L[0]))
log_string('k2 L average RMS: ' + str(avg_rms_L[1]) + '\n')
log_string('k1 L true RMS per shape: ' + str(true_rms_L[:, 0]))
log_string('k2 L true RMS per shape: ' + str(true_rms_L[:, 1]))
log_string('k1 L true average RMS: ' + str(avg_true_rms_L[0]))
log_string('k2 L true average RMS: ' + str(avg_true_rms_L[1]) + '\n')
log_string('k1 tanh RMS per shape: ' + str(rms_tanh[:, 0]))
log_string('k2 tanh RMS per shape: ' + str(rms_tanh[:, 1]))
log_string('k1 tanh average RMS: ' + str(avg_rms_tanh[0]))
log_string('k2 tanh average RMS: ' + str(avg_rms_tanh[1]) + '\n')
LOG_FOUT.close()