forked from FFTW/fftw3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfft.ml
307 lines (271 loc) · 10.8 KB
/
fft.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
(*
* Copyright (c) 1997-1999 Massachusetts Institute of Technology
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*)
(* This is the part of the generator that actually computes the FFT
in symbolic form *)
open Complex
open Util
(* choose a suitable factor of n *)
let choose_factor n =
(* first choice: i such that gcd(i, n / i) = 1, i as big as possible *)
let choose1 n =
let rec loop i f =
if (i * i > n) then f
else if ((n mod i) == 0 && gcd i (n / i) == 1) then loop (i + 1) i
else loop (i + 1) f
in loop 1 1
(* second choice: the biggest factor i of n, where i < sqrt(n), if any *)
and choose2 n =
let rec loop i f =
if (i * i > n) then f
else if ((n mod i) == 0) then loop (i + 1) i
else loop (i + 1) f
in loop 1 1
in let i = choose1 n in
if (i > 1) then i
else choose2 n
let is_power_of_two n = (n > 0) && ((n - 1) land n == 0)
let rec dft_prime sign n input =
let sum filter i =
sigma 0 n (fun j ->
let coeff = filter (exp n (sign * i * j))
in coeff @* (input j)) in
let computation_even = array n (sum identity)
and computation_odd =
let sumr = array n (sum real)
and sumi = array n (sum ((times Complex.i) @@ imag)) in
array n (fun i ->
if (i = 0) then
(* expose some common subexpressions *)
input 0 @+
sigma 1 ((n + 1) / 2) (fun j -> input j @+ input (n - j))
else
let i' = min i (n - i) in
if (i < n - i) then
sumr i' @+ sumi i'
else
sumr i' @- sumi i') in
if (n >= !Magic.rader_min) then
dft_rader sign n input
else if (n == 2) then
computation_even
else
computation_odd
and dft_rader sign p input =
let half =
let one_half = inverse_int 2 in
times one_half
and make_product n a b =
let scale_factor = inverse_int n in
array n (fun i -> a i @* (scale_factor @* b i)) in
(* generates a convolution using ffts. (all arguments are the
same as to gen_convolution, below) *)
let gen_convolution_by_fft n a b addtoall =
let fft_a = dft 1 n a
and fft_b = dft 1 n b in
let fft_ab = make_product n fft_a fft_b
and dc_term i = if (i == 0) then addtoall else zero in
let fft_ab1 = array n (fun i -> fft_ab i @+ dc_term i)
and sum = fft_a 0 in
let conv = dft (-1) n fft_ab1 in
(sum, conv)
(* alternate routine for convolution. Seems to work better for
small sizes. I have no idea why. *)
and gen_convolution_by_fft_alt n a b addtoall =
let ap = array n (fun i -> half (a i @+ a ((n - i) mod n)))
and am = array n (fun i -> half (a i @- a ((n - i) mod n)))
and bp = array n (fun i -> half (b i @+ b ((n - i) mod n)))
and bm = array n (fun i -> half (b i @- b ((n - i) mod n)))
in
let fft_ap = dft 1 n ap
and fft_am = dft 1 n am
and fft_bp = dft 1 n bp
and fft_bm = dft 1 n bm in
let fft_abpp = make_product n fft_ap fft_bp
and fft_abpm = make_product n fft_ap fft_bm
and fft_abmp = make_product n fft_am fft_bp
and fft_abmm = make_product n fft_am fft_bm
and sum = fft_ap 0 @+ fft_am 0
and dc_term i = if (i == 0) then addtoall else zero in
let fft_ab1 = array n (fun i -> (fft_abpp i @+ fft_abmm i) @+ dc_term i)
and fft_ab2 = array n (fun i -> fft_abpm i @+ fft_abmp i) in
let conv1 = dft (-1) n fft_ab1
and conv2 = dft (-1) n fft_ab2 in
let conv = array n (fun i ->
conv1 i @+ conv2 i) in
(sum, conv)
(* generator of assignment list assigning conv to the convolution of
a and b, all of which are of length n. addtoall is added to
all of the elements of the result. Returns (sum, convolution) pair
where sum is the sum of the elements of a. *)
in let gen_convolution =
if (p <= !Magic.alternate_convolution) then
gen_convolution_by_fft_alt
else
gen_convolution_by_fft
(* fft generator for prime n = p using Rader's algorithm for
turning the fft into a convolution, which then can be
performed in a variety of ways *)
in
let g = find_generator p in
let ginv = pow_mod g (p - 2) p in
let input_perm = array p (fun i -> input (pow_mod g i p))
and omega_perm = array p (fun i -> exp p (sign * (pow_mod ginv i p)))
and output_perm = array p (fun i -> pow_mod ginv i p)
in let (sum, conv) =
(gen_convolution (p - 1) input_perm omega_perm (input 0))
in array p (fun i ->
if (i = 0) then
input 0 @+ sum
else
let i' = suchthat 0 (fun i' -> i = output_perm i')
in conv i')
(* our modified version of the conjugate-pair split-radix algorithm,
which reduces the number of multiplications by rescaling the
sub-transforms (power-of-two n's only) *)
and newsplit sign n input =
let rec s n k = (* recursive scale factor *)
if n <= 4 then
one
else
let k4 = (abs k) mod (n / 4) in
let k4' = if k4 <= (n / 8) then k4 else (n/4 - k4) in
(s (n / 4) k4') @* (real (exp n k4'))
and sinv n k = (* 1 / s(n,k) *)
if n <= 4 then
one
else
let k4 = (abs k) mod (n / 4) in
let k4' = if k4 <= (n / 8) then k4 else (n/4 - k4) in
(sinv (n / 4) k4') @* (sec n k4')
in let sdiv2 n k = (s n k) @* (sinv (2*n) k) (* s(n,k) / s(2*n,k) *)
and sdiv4 n k = (* s(n,k) / s(4*n,k) *)
let k4 = (abs k) mod n in
sec (4*n) (if k4 <= (n / 2) then k4 else (n - k4))
in let t n k = (exp n k) @* (sdiv4 (n/4) k)
and dft1 input = input
and dft2 input = array 2 (fun k -> (input 0) @+ ((input 1) @* exp 2 k))
in let rec newsplit0 sign n input =
if (n == 1) then dft1 input
else if (n == 2) then dft2 input
else let u = newsplit0 sign (n / 2) (fun i -> input (i*2))
and z = newsplitS sign (n / 4) (fun i -> input (i*4 + 1))
and z' = newsplitS sign (n / 4) (fun i -> input ((n + i*4 - 1) mod n))
and twid = array n (fun k -> s (n/4) k @* exp n (sign * k)) in
let w = array n (fun k -> twid k @* z (k mod (n / 4)))
and w' = array n (fun k -> conj (twid k) @* z' (k mod (n / 4))) in
let ww = array n (fun k -> w k @+ w' k) in
array n (fun k -> u (k mod (n / 2)) @+ ww k)
and newsplitS sign n input =
if (n == 1) then dft1 input
else if (n == 2) then dft2 input
else let u = newsplitS2 sign (n / 2) (fun i -> input (i*2))
and z = newsplitS sign (n / 4) (fun i -> input (i*4 + 1))
and z' = newsplitS sign (n / 4) (fun i -> input ((n + i*4 - 1) mod n)) in
let w = array n (fun k -> t n (sign * k) @* z (k mod (n / 4)))
and w' = array n (fun k -> conj (t n (sign * k)) @* z' (k mod (n / 4))) in
let ww = array n (fun k -> w k @+ w' k) in
array n (fun k -> u (k mod (n / 2)) @+ ww k)
and newsplitS2 sign n input =
if (n == 1) then dft1 input
else if (n == 2) then dft2 input
else let u = newsplitS4 sign (n / 2) (fun i -> input (i*2))
and z = newsplitS sign (n / 4) (fun i -> input (i*4 + 1))
and z' = newsplitS sign (n / 4) (fun i -> input ((n + i*4 - 1) mod n)) in
let w = array n (fun k -> t n (sign * k) @* z (k mod (n / 4)))
and w' = array n (fun k -> conj (t n (sign * k)) @* z' (k mod (n / 4))) in
let ww = array n (fun k -> (w k @+ w' k) @* (sdiv2 n k)) in
array n (fun k -> u (k mod (n / 2)) @+ ww k)
and newsplitS4 sign n input =
if (n == 1) then dft1 input
else if (n == 2) then
let f = dft2 input
in array 2 (fun k -> (f k) @* (sinv 8 k))
else let u = newsplitS2 sign (n / 2) (fun i -> input (i*2))
and z = newsplitS sign (n / 4) (fun i -> input (i*4 + 1))
and z' = newsplitS sign (n / 4) (fun i -> input ((n + i*4 - 1) mod n)) in
let w = array n (fun k -> t n (sign * k) @* z (k mod (n / 4)))
and w' = array n (fun k -> conj (t n (sign * k)) @* z' (k mod (n / 4))) in
let ww = array n (fun k -> w k @+ w' k) in
array n (fun k -> (u (k mod (n / 2)) @+ ww k) @* (sdiv4 n k))
in newsplit0 sign n input
and dft sign n input =
let rec cooley_tukey sign n1 n2 input =
let tmp1 =
array n2 (fun i2 ->
dft sign n1 (fun i1 -> input (i1 * n2 + i2))) in
let tmp2 =
array n1 (fun i1 ->
array n2 (fun i2 ->
exp n (sign * i1 * i2) @* tmp1 i2 i1)) in
let tmp3 = array n1 (fun i1 -> dft sign n2 (tmp2 i1)) in
(fun i -> tmp3 (i mod n1) (i / n1))
(*
* This is "exponent -1" split-radix by Dan Bernstein.
*)
and split_radix_dit sign n input =
let f0 = dft sign (n / 2) (fun i -> input (i * 2))
and f10 = dft sign (n / 4) (fun i -> input (i * 4 + 1))
and f11 = dft sign (n / 4) (fun i -> input ((n + i * 4 - 1) mod n)) in
let g10 = array n (fun k ->
exp n (sign * k) @* f10 (k mod (n / 4)))
and g11 = array n (fun k ->
exp n (- sign * k) @* f11 (k mod (n / 4))) in
let g1 = array n (fun k -> g10 k @+ g11 k) in
array n (fun k -> f0 (k mod (n / 2)) @+ g1 k)
and split_radix_dif sign n input =
let n2 = n / 2 and n4 = n / 4 in
let x0 = array n2 (fun i -> input i @+ input (i + n2))
and x10 = array n4 (fun i -> input i @- input (i + n2))
and x11 = array n4 (fun i ->
input (i + n4) @- input (i + n2 + n4)) in
let x1 k i =
exp n (k * i * sign) @* (x10 i @+ exp 4 (k * sign) @* x11 i) in
let f0 = dft sign n2 x0
and f1 = array 4 (fun k -> dft sign n4 (x1 k)) in
array n (fun k ->
if k mod 2 = 0 then f0 (k / 2)
else let k' = k mod 4 in f1 k' ((k - k') / 4))
and prime_factor sign n1 n2 input =
let tmp1 = array n2 (fun i2 ->
dft sign n1 (fun i1 -> input ((i1 * n2 + i2 * n1) mod n)))
in let tmp2 = array n1 (fun i1 ->
dft sign n2 (fun k2 -> tmp1 k2 i1))
in fun i -> tmp2 (i mod n1) (i mod n2)
in let algorithm sign n =
let r = choose_factor n in
if List.mem n !Magic.rader_list then
(* special cases *)
dft_rader sign n
else if (r == 1) then (* n is prime *)
dft_prime sign n
else if (gcd r (n / r)) == 1 then
prime_factor sign r (n / r)
else if (n mod 4 = 0 && n > 4) then
if !Magic.newsplit && is_power_of_two n then
newsplit sign n
else if !Magic.dif_split_radix then
split_radix_dif sign n
else
split_radix_dit sign n
else
cooley_tukey sign r (n / r)
in
array n (algorithm sign n input)