JVM包含两个子系统和两个组件,两个子系统为Class loader(类装载)、Execution engine(执行引擎);两个组件为Runtime data area(运行时数据区)、Native Interface(本地接口)。
- Class loader(类装载):根据给定的全限定名类名(如:java.lang.Object)来装载class文件到Runtime data area中的method area。
- Execution engine(执行引擎):执行classes中的指令。
- Native Interface(本地接口):与native libraries交互,是其它编程语言交互的接口。
- Runtime data area(运行时数据区域):这就是我们常说的JVM的内存。
**作用 **:首先通过编译器把 Java 代码转换成字节码,类加载器(ClassLoader)再把字节码加载到内存中,将其放在运行时数据区(Runtime data area)的方法区内,而字节码文件只是 JVM 的一套指令集规范,并不能直接交给底层操作系统去执行,因此需要特定的命令解析器执行引擎(Execution Engine),将字节码翻译成底层系统指令,再交由 CPU 去执行,而这个过程中需要调用其他语言的本地库接口(Native Interface)来实现整个程序的功能。
下面是Java程序运行机制详细说明
Java程序运行机制步骤
- 首先利用IDE集成开发工具编写Java源代码,源文件的后缀为.java;
- 再利用编译器(javac命令)将源代码编译成字节码文件,字节码文件的后缀名为.class;
- 运行字节码的工作是由解释器(java命令)来完成的。
从上图可以看,java文件通过编译器变成了.class文件,接下来类加载器又将这些.class文件加载到JVM中。
其实可以一句话来解释:类的加载指的是将类的.class文件中的二进制数据读入到内存中,将其放在运行时数据区的方法区内,然后在堆区创建一个 java.lang.Class对象,用来封装类在方法区内的数据结构。
Java的所有指令有两百个左右,一个字节(8位)可以存储256种不同指令信息,一个这样的字节称为字节码。在代码执行过程中,JVM将字节码解释执行,屏蔽对底层操作系统的依赖;JVM也可以将字节码编译执行,如果是热点代码,会通过JIT动态地编译为机器码,提高执行效率。
对两个操作数栈上的值进行运算,并将结果写入操作数栈,如IADD,IMUL等
显式地转换两种不同的数据类型。如I2L,D2F
根据类进行数据对象的创建、初始化、方法指令调用相关指令,常见指令如下:
- 创建对象指令:NEW,NEW ARRAY等
- 访问属性指令 :GETFIELD, PUTFIELD, GETSTATIC等
- 检查实例类型指令 : INSTANCEOF、CHECKCAST等
- 出栈操作, POP即一个元素,POP2即两个元素
- 复制栈顶元素并压入栈 如DUP
- INVOKEVIRTUAL:调用对象的实例方法
- INVOKESPECIAL:调用实例初始化方法,私有方法和父类方法
- INVOKESTATIC:调用静态方法
- RETURN:返回VOID类型
- **词法分析:**通过空格分隔出单词、操作符、控制符等信息,将其形成token信息流,传递给语法解析器
- **语法分析:**把词法解析得到的token信息流按照Java语法规则组将成一棵语法树,如图所示
- **语义分析:**检查关键词的使用是否合理、类型是否匹配、作用域是否正确等
语义分析完即可生成字节码
字节码必须通过类加载过程中加载到JVM环境中才可以执行。
- 解释执行
- 编译执行
- JIT编译与解释混合执行
混合执行模式的优势在于解释器在启动时先解释执行,省去编译时间
JVM会对热点代码统计分析,识别高频的方法调用,循环体,公共模块,基于JIT的动态编译技术,将热点代码直接转化成机器码,直接交给CPU执行。
JIT的作用是将Java字节码动态编译成可以直接发送给处理器的机器码
类是在运行期间第一次使用时动态加载的,而不是一次性加载所有类。因为如果一次性加载,那么会占用很多的内存。
系统加载 Class 类型的文件主要三步:加载->连接->初始化。连接过程又可分为三步:验证->准备->解析。
- 通过类的完全限定名称获取定义该类的二进制字节流。
- 将该字节流表示的静态存储结构转换为方法区的运行时存储结构。
- 在内存中生成一个代表该类的 Class 对象,作为方法区中该类各种数据的访问入口
注意:二进制字节流可以从以下方式获取
- 从 ZIP 包读取,成为 JAR、EAR、WAR 格式的基础。
- 从网络中获取,最典型的应用是 Applet。
- 运行时计算生成,例如动态代理技术,在 java.lang.reflect.Proxy 使用 ProxyGenerator.generateProxyClass 的代理类的二进制字节流。
- 由其他文件生成,例如由 JSP 文件生成对应的 Class 类。
- 是更详细的校验,比如final是否合规、类型是否正确、静态变量是否合理等。确保 Class 文件的字节流中包含的信息符合当前虚拟机的要求,并且不会危害虚拟机自身的安全。
- 为静态变量分配内存,并设定初始值,使用的是方法区的内存
注意:
- 实例变量不会在这阶段分配内存,它会在对象实例化时随着对象一起被分配在堆中。应该注意到,实例化不是类加载的一个过程,类加载发生在所有实例化操作之前,并且类加载只进行一次,实例化可以进行多次。
- 初始值一般为 0 值,例如下面的类变量 value 被初始化为 0 而不是 123。
public static int value = 123;
- 如果类变量是常量,那么它将初始化为表达式所定义的值而不是 0。例如下面的常量 value 被初始化为 123 而不是 0。
public static final int value = 123;
- 虚拟机将常量池中的符号引用替换成直接引用的过程。符号引用就理解为一个标示,而直接引用直接指向内存中的地址;解析动作主要针对类或接口、字段、类方法、接口方法、方法类型、方法句柄和调用限定符7类符号引用进行。
- 符号引用就是一组符号来描述目标,可以是任何字面量。直接引用就是直接指向目标的指针、相对偏移量或一个间接定位到目标的句柄。在程序实际运行时,只有符号引用是不够的,举个例子:在程序执行方法时,系统需要明确知道这个方法所在的位置。Java 虚拟机为每个类都准备了一张方法表来存放类中所有的方法。当需要调用一个类的方法的时候,只要知道这个方法在方发表中的偏移量就可以直接调用该方法了。通过解析操作符号引用就可以直接转变为目标方法在类中方法表的位置,从而使得方法可以被调用。
- 综上,解析阶段是虚拟机将常量池内的符号引用替换为直接引用的过程,也就是得到类或者字段、方法在内存中的指针或者偏移量。
初始化阶段才真正开始执行类中定义的 Java 程序代码。初始化阶段是虚拟机执行类构造器 () 方法的过程。() 方法是在编译阶段由编译器自动收集类中静态语句块和赋值操作组成的,编译器收集的顺序由语句在源文件中出现的顺序决定。
特别注意的是,静态语句块只能访问到定义在它之前的类变量,定义在它之后的类变量只能赋值,不能访问。例如以下代码:
public class Test {
static {
i = 0; // 给变量赋值可以正常编译通过
System.out.print(i); // 这句编译器会提示“非法向前引用”
}
static int i = 1;
}
由于父类的 () 方法先执行,也就意味着父类中定义的静态语句块的执行要优先于子类。例如以下代码:
static class Parent {
public static int A = 1;
static {
A = 2;
}
}
static class Sub extends Parent {
public static int B = A;
}
public static void main(String[] args) {
System.out.println(Sub.B); // 2
}
接口中不可以使用静态语句块,但仍然有类变量初始化的赋值操作,因此接口与类一样都会生成 () 方法。但接口与类不同的是,执行接口的 () 方法不需要先执行父接口的 () 方法。只有当父接口中定义的变量使用时,父接口才会初始化。另外,接口的实现类在初始化时也一样不会执行接口的 () 方法。
虚拟机会保证一个类的 () 方法在多线程环境下被正确的加锁和同步,如果多个线程同时初始化一个类,只会有一个线程执行这个类的 () 方法,其它线程都会阻塞等待,直到活动线程执行 () 方法完毕。如果在一个类的 () 方法中有耗时的操作,就可能造成多个线程阻塞,在实际过程中此种阻塞很隐蔽。
主动引用
虚拟机规范中并没有强制约束何时进行加载,但是规范严格规定了有且只有下列五种情况必须对类进行初始化(加载、验证、准备都会随之发生):
- 遇到 new、getstatic、putstatic、invokestatic 这四条字节码指令时,如果类没有进行过初始化,则必须先触发其初始化。最常见的生成这 4 条指令的场景是:使用 new 关键字实例化对象的时候;读取或设置一个类的静态字段(被 final 修饰、已在编译期把结果放入常量池的静态字段除外)的时候;以及调用一个类的静态方法的时候。
- 使用 java.lang.reflect 包的方法对类进行反射调用的时候,如果类没有进行初始化,则需要先触发其初始化。
- 当初始化一个类的时候,如果发现其父类还没有进行过初始化,则需要先触发其父类的初始化。
- 当虚拟机启动时,用户需要指定一个要执行的主类(包含 main() 方法的那个类),虚拟机会先初始化这个主类;
- 当使用 JDK 1.7 的动态语言支持时,如果一个 java.lang.invoke.MethodHandle 实例最后的解析结果为 REF_getStatic, REF_putStatic, REF_invokeStatic 的方法句柄,并且这个方法句柄所对应的类没有进行过初始化,则需要先触发其初始化;
被动引用
以上 5 种场景中的行为称为对一个类进行主动引用。除此之外,**所有引用类的方式都不会触发初始化,称为被动引用。**被动引用的常见例子包括:
- 通过子类引用父类的静态字段,不会导致子类初始化。
System.out.println(SubClass.value); // value 字段在 SuperClass 中定义
- 通过数组定义来引用类,不会触发此类的初始化。该过程会对数组类进行初始化,数组类是一个由虚拟机自动生成的、直接继承自 Object 的子类,其中包含了数组的属性和方法。
SuperClass[] sca = new SuperClass[10];
- 常量在编译阶段会存入调用类的常量池中,本质上并没有直接引用到定义常量的类,因此不会触发定义常量的类的初始化。
System.out.println(ConstClass.HELLOWORLD);
**对于任意一个类,都必须由加载它的类加载器和这个类本身一起共同确立其在Java虚拟机中的唯一性,每一个类加载器,都拥有一个独立的类名称空间。**这句话可以表达得更通俗一些:比较两个类是否“相等”,只有在这两个类是由同一个类加载器加载的前提下才有意义,否则,即使这两个类来源于同一个Class文件,被同一个Java虚拟机加载,只要加载它们的类加载器不同,那这两个类就必定不相等。
这里所指的**“相等”**,**包括代表类的Class对象的equals()方法、isAssignableFrom()方法、isInstance()方法的返回结果,**也包括了使用instanceof关键字做对象所属关系判定等各种情况。如果没有注意到类加载器的影响。
启动类加载器(Bootstrap Class Loader):
- 前面已经介绍过,这个类加载器负责加载存放在**<JAVA_HOME>\lib**目录,或者被-Xbootclasspath参数所指定的路径中存放的,而且是Java虚拟机能够识别的(按照文件名识别,如rt.jar、tools.jar,名字不符合的类库即使放在lib目录中也不会被加载)类库加载到虚拟机的内存中。启动类加载器无法被Java程序直接引用,用户在编写自定义类加载器时,如果需要把加载请求委派给引导类加载器去处理,那直接使用null代替即可。
扩展类加载器(Extension Class Loader):
- 这个类加载器是在类sun.misc.Launcher$ExtClassLoader中以Java代码的形式实现的。它负责加载<JAVA_HOME>\lib\ext目录中,或者被java.ext.dirs系统变量所指定的路径中所有的类库。根据“扩展类加载器”这个名称,就可以推断出这是一种Java系统类库的扩展机制,JDK的开发团队允许用户将具有通用性的类库放置在ext目录里以扩展Java SE的功能,在JDK 9之后,这种扩展机制被模块化带来的天然的扩展能力所取代。由于扩展类加载器是由Java代码实现的,开发者可以直接在程序中使用扩展类加载器来加载Class文件。
应用程序类加载器(Application Class Loader):
- 这个类加载器由sun.misc.Launcher$AppClassLoader来实现。由于应用程序类加载器是ClassLoader类中的getSystem-ClassLoader()方法的返回值,所以有些场合中也称它为“系统类加载器”。它负责加载用户类路径(ClassPath)上所有的类库,开发者同样可以直接在代码中使用这个类加载器。如果应用程序中没有自定义过自己的类加载器,一般情况下这个就是程序中默认的类加载器。
当我们在使用 jdbc 驱动时,经常会使用 Class.forName 方法来动态加载驱动类。
Class.forName("com.mysql.cj.jdbc.Driver");
其原理是 mysql 驱动的 Driver 类里有一个静态代码块,它会在 Driver 类被加载的时候执行。这个静态代码块会将 mysql 驱动实例注册到全局的 jdbc 驱动管理器里。
class Driver {
static {
try {
java.sql.DriverManager.registerDriver(new Driver());
} catch (SQLException E) {
throw new RuntimeException("Can't register driver!");
}
}
...
}
forName 方法同样也是使用调用者 Class 对象的 ClassLoader 来加载目标类。不过 forName 还提供了多参数版本,可以指定使用哪个 ClassLoader 来加载
Class<?> forName(String name, boolean initialize, ClassLoader cl)
通过这种形式的 forName 方法可以突破内置加载器的限制,通过使用自定类加载器允许我们自由加载其它任意来源的类库。根据 ClassLoader 的传递性,目标类库传递引用到的其它类库也将会使用自定义加载器加载。
- Class.forName 得到 class 是已经初始化完成了的
- ClassLoder.loadClass 得到的 class 是还没有链接完成的
Java中的所有类,都需要由类加载器装载到JVM中才能运行。类加载器本身也是一个类,而它的工作就是把class文件从硬盘读取到内存中。在写程序的时候,我们几乎不需要关心类的加载,因为这些都是隐式装载的,除非我们有特殊的用法,像是反射,就需要显式的加载所需要的类。
类装载方式,有两种 :
- 隐式装载, 程序在运行过程中当碰到通过new 等方式生成对象时,隐式调用类装载器加载对应的类到jvm中,
- 显式装载, 通过class.forname()等方法,显式加载需要的类
Java类的加载是动态的,它并不会一次性将所有类全部加载后再运行,而是保证程序运行的基础类(像是基类)完全加载到jvm中,至于其他类,则在需要的时候才加载。这当然就是为了节省内存开销。
- 每一个类都有一个对应它的类加载器。系统中的 ClassLoder 在协同工作的时候会默认使用 双亲委派模型 。即在类加载的时候,系统会首先判断当前类是否被加载过。已经被加载的类会直接返回,否则才会尝试加载。加载的时候,首先会把该请求委派该父类加载器的 loadClass() 处理,因此所有的请求最终都应该传送到顶层的启动类加载器 BootstrapClassLoader 中。当父类加载器无法处理时,才由自己来处理。当父类加载器为null时,会使用启动类加载器 BootstrapClassLoader 作为父类加载器。
双亲委派模型的实现代码非常简单,逻辑非常清晰,都集中在 java.lang.ClassLoader 的 loadClass() 中,相关代码如下所示。
private final ClassLoader parent;
protected Class<?> loadClass(String name, boolean resolve)
throws ClassNotFoundException
{
synchronized (getClassLoadingLock(name)) {
// 首先,检查请求的类是否已经被加载过
Class<?> c = findLoadedClass(name);
if (c == null) {
long t0 = System.nanoTime();
try {
if (parent != null) {//父加载器不为空,调用父加载器loadClass()方法处理
c = parent.loadClass(name, false);
} else {//父加载器为空,使用启动类加载器 BootstrapClassLoader 加载
c = findBootstrapClassOrNull(name);
}
} catch (ClassNotFoundException e) {
//抛出异常说明父类加载器无法完成加载请求
}
if (c == null) {
long t1 = System.nanoTime();
//自己尝试加载
c = findClass(name);
// this is the defining class loader; record the stats
sun.misc.PerfCounter.getParentDelegationTime().addTime(t1 - t0);
sun.misc.PerfCounter.getFindClassTime().addElapsedTimeFrom(t1);
sun.misc.PerfCounter.getFindClasses().increment();
}
}
if (resolve) {
resolveClass(c);
}
return c;
}
}
- 唯一性:可以避免类的重复加载(JVM 区分不同类的方式不仅仅根据类名,相同的类文件被不同的类加载器加载产生的是两个不同的类)
- **安全性:**也保证了 Java 的核心 API 不被篡改。如果没有使用双亲委派模型,而是每个类加载器加载自己的话就会出现一些问题,比如我们编写一个称为 java.lang.Object 类的话,那么程序运行的时候,系统就会出现多个不同的 Object 类。
- 隔离加载类:在某些框架内进行中间件与应用的模块隔离,把类加载到不同的环境
- 修改类的加载方式:类的加载模型并非强制,除Bootstrcp外,其他的加载并非一定要引入,或者根据实际情况再某个时间点进行动态加载
- **扩展加载源:**比如从数据库、网络进行加载
- **防止源码泄露:**Java代码容易被编译和篡改,可以进行编译加密。那么类加载器也需要自定义,还原加密的字节码。
ClassLoader 里面有三个重要的方法 loadClass()、findClass() 和 defineClass()。
loadClass() 方法是加载目标类的入口,它首先会查找当前 ClassLoader 以及它的双亲里面是否已经加载了目标类,如果没有找到就会让双亲尝试加载,如果双亲都加载不了,就会调用 findClass() 让自定义加载器自己来加载目标类。ClassLoader 的 findClass() 方法是需要子类来覆盖的,不同的加载器将使用不同的逻辑来获取目标类的字节码。拿到这个字节码之后再调用 defineClass() 方法将字节码转换成 Class 对象。下面我使用伪代码表示一下基本过程
Java 虚拟机在执行 Java 程序的过程中会把它管理的内存划分成若干个不同的数据区域。JDK. 1.8 和之前的版本略有不同,下面会介绍到。
程序计数器(Program Counter Register)是一块较小的内存空间,它可以看作是当前线程所执行的字节码的行号指示器。在Java虚拟机的概念模型里,字节码解释器工作时就是通过改变这个计数器的值来选取下一条需要执行的字节码指令,它是程序控制流的指示器,分支、循环、跳转、异常处理、线程恢复等基础功能都需要依赖这个计数器来完成。
由于Java虚拟机的多线程是通过线程轮流切换、分配处理器执行时间的方式来实现的,在任何一个确定的时刻,一个处理器(对于多核处理器来说是一个内核)都只会执行一条线程中的指令。因此,为了线程切换后能恢复到正确的执行位置,每条线程都需要有一个独立的程序计数器,各条线程之间计数器互不影响,独立存储,我们称这类内存区域为“线程私有”的内存。
如果线程正在执行的是一个Java方法,这个计数器记录的是正在执行的虚拟机字节码指令的地址;如果正在执行的是本地(Native)方法,这个计数器值则应为空(Undefined)。此内存区域是唯一一个在《Java虚拟机规范》中没有规定任何OutOfMemoryError情况的区域。
与程序计数器一样,Java 虚拟机栈也是线程私有的,它的生命周期和线程相同,描述的是 Java 方法执行的内存模型,每个方法被执行的时候,Java虚拟机都会同步创建一个栈帧(Stack Frame)用于存储局部变量表、操作数栈、动态连接、方法出口等信息。每一个方法被调用直至执行完毕的过程,就对应着一个栈帧在虚拟机栈中从入栈到出栈的过程。
Java 虚拟机栈会出现两种错误:StackOverFlowError 和 OutOfMemoryError。
- StackOverFlowError: 若 Java 虚拟机栈的内存大小不允许动态扩展,那么当线程请求栈的深度超过当前 Java 虚拟机栈的最大深度的时候,就抛出 StackOverFlowError 错误。
- OutOfMemoryError: 若 Java 虚拟机栈的内存大小允许动态扩展,且当线程请求栈时内存用完了,无法再动态扩展了,此时抛出 OutOfMemoryError 错误。
局部变量表(Local Variable Table)是一组变量值存储空间,用于存放方法参数和方法内定义的局部变量。局部变量表的容量以变量槽(Variable Slot)为最小单位,Java虚拟机规范并没有定义一个槽所应该占用内存空间的大小,但是规定了一个槽应该可以存放一个32位以内的数据类型。
在Java程序编译为Class文件时,就在方法的Code属性中的max_locals数据项中确定了该方法所需分配的局部变量表的最大容量。(最大Slot数量)
- 一个局部变量可以保存一个类型为boolean、byte、char、short、int、float、对象引用(reference类型,它并不等同于对象本身,可能是一个指向对象起始地址的引用指针,也可能是指向一个代表对象的句柄或者其他与此对象相关的位置)和returnAddress类型(指向了一条字节码指令的地址)。
- 局部变量表所需的内存空间在编译期间完成分配,当进入一个方法时,这个方法需要在栈帧中分配多大的局部变量空间是完全确定的,在方法运行期间不会改变局部变量表的大小
- 虚拟机通过索引定位的方法查找相应的局部变量,索引的范围是从0~局部变量表最大容量。如果Slot是32位的,则遇到一个64位数据类型的变量(如long或double型),则会连续使用两个连续的Slot来存储。
操作数栈(Operand Stack)也常称为操作栈,它是一个后入先出栈(LIFO)。同局部变量表一样,操作数栈的最大深度也在编译的时候写入到方法的Code属性的max_stacks数据项中。
操作数栈的每一个元素可以是任意Java数据类型,32位的数据类型占一个栈容量,64位的数据类型占2个栈容量,且在方法执行的任意时刻,操作数栈的深度都不会超过max_stacks中设置的最大值。
当一个方法刚刚开始执行时,其操作数栈是空的,随着方法执行和字节码指令的执行,会从局部变量表或对象实例的字段中复制常量或变量写入到操作数栈,再随着计算的进行将栈中元素出栈到局部变量表或者返回给方法调用者,也就是出栈/入栈操作。一个完整的方法执行期间往往包含多个这样出栈/入栈的过程。
在一个class文件中,一个方法要调用其他方法,需要将这些方法的符号引用转化为其在内存地址中的直接引用,而符号引用存在于方法区中的运行时常量池。
Java虚拟机栈中,每个栈帧都包含一个指向运行时常量池中该栈所属方法的符号引用,持有这个引用的目的是为了支持方法调用过程中的动态连接(Dynamic Linking)。
这些符号引用一部分会在类加载阶段或者第一次使用时就直接转化为直接引用,这类转化称为静态解析。另一部分将在每次运行期间转化为直接引用,这类转化称为动态连接。
两种退出情况
- **正常退出:**是指方法正常完成并退出,没有抛出任何异常(包括Java虚拟机异常以及执行时通过throw语句显示抛出的异常)。如果当前方法正常完成,则根据当前方法返回字节码指令,这时有可能会有返回值传递给方法调用者(调用它的方法),或者无返回值。具体是否有返回值以及返回值的数据类型将根据该方法返回的字节码指令确定
- **异常退出:**是指方法执行过程中遇到异常,并且这个异常在方法体内部没有得到处理,导致方法退出。无论方法采用何种方式退出,在方法退出后都需要返回到方法被调用的位置,程序才能继续执行,方法返回时可能需要在当前栈帧中保存一些信息,用来帮他恢复它的上层方法执行状态。
- 退出三种方式:
- 返回值压入上层调用栈帧
- 异常信息抛给能够处理的栈帧
- PC计数器指向方法调用后的下一条指令
虚拟机规范允许具体的虚拟机实现增加一些规范中没有描述的信息到栈帧之中,例如和调试相关的信息,这部分信息完全取决于不同的虚拟机实现。在实际开发中,一般会把动态连接,方法返回地址与其他附加信息一起归为一类,称为栈帧信息。
本地方法栈(Native Method Stacks)与虚拟机栈所发挥的作用是非常相似的,其区别只是虚拟机栈为虚拟机执行Java方法(也就是字节码)服务,而本地方法栈则是为虚拟机使用到的本地(Native)方法服务。
《Java虚拟机规范》对本地方法栈中方法使用的语言、使用方式与数据结构并没有任何强制规定,因此具体的虚拟机可以根据需要自由实现它,甚至有的Java虚拟机(譬如Hot-Spot虚拟机)直接就把本地方法栈和虚拟机栈合二为一。与虚拟机栈一样,本地方法栈也会在栈深度溢出或者栈扩展失败时分别抛出StackOverflowError和OutOfMemoryError异常。
对于Java应用程序来说,Java堆(Java Heap)是虚拟机所管理的内存中最大的一块。Java堆是被所有线程共享的一块内存区域,在虚拟机启动时创建。此内存区域的唯一目的就是存放对象实例,Java世界里“几乎”所有的对象实例都在这里分配内存
Java 堆是垃圾收集器管理的主要区域,因此也被称作GC 堆(Garbage Collected Heap).从垃圾回收的角度,由于现在收集器基本都采用分代垃圾收集算法,所以 Java 堆还可以细分为:新生代和老年代:再细致一点有:Eden 空间、From Survivor、To Survivor 空间等。进一步划分的目的是更好地回收内存,或者更快地分配内存
注意:
堆的内存可以调整
在 JDK 7 版本及JDK 7 版本之前,堆内存被通常被分为下面三部分:
- 新生代内存(Young Generation)
- 老生代(Old Generation)
- 永生代(Permanent Generation)
JDK 8 版本之后方法区(HotSpot 的永久代)被彻底移除了(JDK1.7 就已经开始了),取而代之是元空间,元空间使用的是直接内存。
大部分情况,对象都会首先在 Eden 区域分配,在一次新生代垃圾回收后,如果对象还存活,则会进入 s0 或者 s1,并且对象的年龄还会加 1(Eden 区->Survivor 区后对象的初始年龄变为 1),当它的年龄增加到一定程度(默认为 15 岁),就会被晋升到老年代中。对象晋升到老年代的年龄阈值,可以通过参数 -XX:MaxTenuringThreshold 来设置
堆这里最容易出现的就是 OutOfMemoryError 错误,并且出现这种错误之后的表现形式还会有几种,比如:
- OutOfMemoryError: **GC Overhead Limit Exceeded **: 当JVM花太多时间执行垃圾回收并且只能回收很少的堆空间时,就会发生此错误。
- java.lang.OutOfMemoryError: **Java heap space **:假如在创建新的对象时, 堆内存中的空间不足以存放新创建的对象, 就会引发java.lang.OutOfMemoryError: Java heap space 错误。(和本机物理内存无关,和你配置的内存大小有关!)
方法区与 Java 堆一样,是各个线程共享的内存区域,它用于存储已被虚拟机加载的类信息、常量、静态变量、即时编译器编译后的代码等数据。虽然 Java 虚拟机规范把方法区描述为堆的一个逻辑部分,但是它却有一个别名叫做 Non-Heap(非堆),目的应该是与 Java 堆区分开来。
《Java 虚拟机规范》只是规定了有方法区这么个概念和它的作用,并没有规定如何去实现它。那么,在不同的 JVM 上方法区的实现肯定是不同的了。 方法区和永久代的关系很像 Java 中接口和类的关系,类实现了接口,而永久代就是 HotSpot 虚拟机对虚拟机规范中方法区的一种实现方式。 也就是说,永久代是 HotSpot 的概念,方法区是 Java 虚拟机规范中的定义,是一种规范,而永久代是一种实现,一个是标准一个是实现,其他的虚拟机实现并没有永久代这一说法。
JDK 1.8 之前永久代还没被彻底移除的时候通常通过下面这些参数来调节方法区大小
-XX:PermSize=N //方法区 (永久代) 初始大小
-XX:MaxPermSize=N //方法区 (永久代) 最大大小,超过这个值将会抛出 OutOfMemoryError 异常:java.lang.OutOfMemoryError: PermGen
相对而言,垃圾收集行为在这个区域是比较少出现的,但并非数据进入方法区后就“永久存在”了。 JDK 1.8 的时候,方法区(HotSpot 的永久代)被彻底移除了(JDK1.7 就已经开始了),取而代之是元空间,元空间使用的是直接内存。
下面是一些常用参数:
-XX:MetaspaceSize=N //设置 Metaspace 的初始(和最小大小)
-XX:MaxMetaspaceSize=N //设置 Metaspace 的最大大小
与永久代很大的不同就是,如果不指定大小的话,随着更多类的创建**,虚拟机会耗尽所有可用的系统内存。**
- 整个永久代有一个 JVM 本身设置固定大小上限,无法进行调整,而元空间使用的是直接内存,受本机可用内存的限制,虽然元空间仍旧可能溢出,但是比原来出现的几率会更小。
当你元空间溢出时会得到如下错误: java.lang.OutOfMemoryError: MetaSpace
你可以使用 -XX:MaxMetaspaceSize 标志设置最大元空间大小,默认值为 unlimited,这意味着它只受系统内存的限制。-XX:MetaspaceSize 调整标志定义元空间的初始大小如果未指定此标志,则 Metaspace 将根据运行时的应用程序需求动态地重新调整大小。
- 元空间里面存放的是类的元数据,这样加载多少类的元数据就不由 MaxPermSize 控制了, 而由系统的实际可用空间来控制,这样能加载的类就更多了。
- 在 JDK8,合并 HotSpot 和 JRockit 的代码时, JRockit 从来没有一个叫永久代的东西, 合并之后就没有必要额外的设置这么一个永久代的地方了。
考虑到HotSpot未来的发展,在JDK 6的时候HotSpot开发团队就有放弃永久代,逐步改为采用本地内存(Native Memory)来实现方法区的计划了[插图],到了JDK 7的HotSpot,已经把原本放在永久代的字符串常量池(放到堆中了)、静态变量等移出,而到了JDK 8,终于完全废弃了永久代的概念,改用与JRockit、J9一样在本地内存中实现的元空间(Meta-space)来代替,把JDK 7中永久代还剩余的内容(主要是类型信息)全部移到元空间中。
JDK8中将永久代的字符串常量移到堆中,其他内容包括类元信息、字段、静态属性、方法、常量都移动到元空间。
运行时常量池(Runtime Constant Pool)是方法区的一部分。Class文件中除了有类的版本、字段、方法、接口等描述信息外,还有一项信息是常量池表(Constant Pool Table),用于存放编译期生成的各种字面量与符号引用,这部分内容将在类加载后存放到方法区的运行时常量池中。
不过一般来说,除了保存Class文件中描述的符号引用外,还会把由符号引用翻译出来的直接引用也存储在运行时常量池中
运行时常量池相对于Class文件常量池的另外一个重要特征是具备动态性,Java语言并不要求常量一定只有编译期才能产生,也就是说,并非预置入Class文件中常量池的内容才能进入方法区运行时常量池,运行期间也可以将新的常量放入池中
注意JDK8后将字符串常量池在堆中了,而运行时常量池应该在元空间中,网上各种说法乱七八糟
直接内存并不是虚拟机运行时数据区的一部分,也不是虚拟机规范中定义的内存区域,但是这部分内存也被频繁地使用。而且也可能导致 OutOfMemoryError 错误出现。
JDK1.4 中新加入的 NIO(New Input/Output) 类,引入了一种基于通道(Channel) 与缓存区(Buffer) 的 I/O 方式,它可以直接使用 Native 函数库直接分配堆外内存,然后通过一个存储在 Java 堆中的 DirectByteBuffer 对象作为这块内存的引用进行操作。这样就能在一些场景中显著提高性能,因为避免了在 Java 堆和 Native 堆之间来回复制数据。
本机直接内存的分配不会受到 Java 堆的限制,但是,既然是内存就会受到本机总内存大小以及处理器寻址空间的限制。
介绍完Java虚拟机的运行时数据区域之后,我们大致明白了Java虚拟机内存模型的概况,相信读者了解过内存中放了什么,也许就会更进一步想了解这些虚拟机内存中数据的其他细节,譬如它们是如何创建、如何布局以及如何访问的。对于这样涉及细节的问题,必须把讨论范围限定在具体的虚拟机和集中在某一个内存区域上才有意义。基于实用优先的原则,笔者以最常用的虚拟机HotSpot和最常用的内存区域Java堆为例,深入探讨一下HotSpot虚拟机在Java堆中对象分配、布局和访问的全过程。
虚拟机遇到一条 new 指令时,首先将去检查这个指令的参数是否能在常量池中定位到这个类的符号引用,并且检查这个符号引用代表的类是否已被加载过、解析和初始化过。如果没有,那必须先执行相应的类加载过程。
在类加载检查通过后,接下来虚拟机将为新生对象分配内存。对象所需的内存大小在类加载完成后便可确定,为对象分配空间的任务等同于把一块确定大小的内存从 Java 堆中划分出来。分配方式有 “指针碰撞” 和 “空闲列表” 两种,选择那种分配方式由 Java 堆是否规整决定,而 Java 堆是否规整又由所采用的垃圾收集器是否带有压缩整理功能决定。
内存分配的两种方式:(补充内容,需要掌握)
选择以上两种方式中的哪一种,取决于 Java 堆内存是否规整。而 Java 堆内存是否规整,取决于 GC 收集器的算法是"标记-清除",还是"标记-整理"(也称作"标记-压缩"),值得注意的是,复制算法内存也是规整的
内存分配并发问题(补充内容,需要掌握)
在创建对象的时候有一个很重要的问题,就是线程安全,因为在实际开发过程中,创建对象是很频繁的事情,作为虚拟机来说,必须要保证线程是安全的,通常来讲,虚拟机采用两种方式来保证线程安全:
- CAS+失败重试: CAS 是乐观锁的一种实现方式。所谓乐观锁就是,每次不加锁而是假设没有冲突而去完成某项操作,如果因为冲突失败就重试,直到成功为止。虚拟机采用 CAS 配上失败重试的方式保证更新操作的原子性。
- TLAB: 为每一个线程预先在 Eden 区分配一块儿内存,JVM 在给线程中的对象分配内存时,首先在 TLAB 分配,当对象大于 TLAB 中的剩余内存或 TLAB 的内存已用尽时,再采用上述的 CAS 进行内存分配
内存分配完成后,虚拟机需要将分配到的内存空间都初始化为零值(不包括对象头),这一步操作保证了对象的实例字段在 Java 代码中可以不赋初始值就直接使用,程序能访问到这些字段的数据类型所对应的零值。
初始化零值完成之后,虚拟机要对对象进行必要的设置,例如这个对象是那个类的实例、如何才能找到类的元数据信息、对象的哈希码、对象的 GC 分代年龄等信息。 这些信息存放在对象头中。 另外,根据虚拟机当前运行状态的不同,如是否启用偏向锁等,对象头会有不同的设置方式。
在上面工作都完成之后,从虚拟机的视角来看,一个新的对象已经产生了,但从 Java 程序的视角来看,对象创建才刚开始, 方法还没有执行,所有的字段都还为零。所以一般来说,执行 new 指令之后会接着执行 方法,把对象按照程序员的意愿进行初始化,这样一个真正可用的对象才算完全产生出来。
在 Hotspot 虚拟机中,对象在内存中的布局可以分为 3 块区域:对象头、实例数据和对齐填充。
Hotspot 虚拟机的对象头包括两部分信息,第一部分用于存储对象自身的运行时数据(哈希码、GC 分代年龄、锁状态标志等等),另一部分是类型指针,即对象指向它的类元数据的指针,虚拟机通过这个指针来确定这个对象是那个类的实例。
实例数据部分是对象真正存储的有效信息,也是在程序中所定义的各种类型的字段内容。
对齐填充部分不是必然存在的,也没有什么特别的含义,仅仅起占位作用。 因为 Hotspot 虚拟机的自动内存管理系统要求对象起始地址必须是 8 字节的整数倍,换句话说就是对象的大小必须是 8 字节的整数倍。而对象头部分正好是 8 字节的倍数(1 倍或 2 倍),因此,当对象实例数据部分没有对齐时,就需要通过对齐填充来补全
建立对象就是为了使用对象,我们的 Java 程序通过栈上的 reference 数据来操作堆上的具体对象。对象的访问方式由虚拟机实现而定,目前主流的访问方式有①使用句柄和②直接指针两种:
- 句柄: 如果使用句柄的话,那么 Java 堆中将会划分出一块内存来作为句柄池,reference 中存储的就是对象的句柄地址,而句柄中包含了对象实例数据与类型数据各自的具体地址信息;
- 直接指针: 如果使用直接指针访问,那么 Java 堆对象的布局中就必须考虑如何放置访问类型数据的相关信息,而 reference 中存储的直接就是对象的地址。
这两种对象访问方式各有优势。使用句柄来访问的最大好处是 reference 中存储的是稳定的句柄地址,在对象被移动时只会改变句柄中的实例数据指针,而 reference 本身不需要修改。使用直接指针访问方式最大的好处就是速度快,它节省了一次指针定位的时间开销。
当需要排查各种内存溢出、内存泄漏问题时,当垃圾收集成为系统达到更高并发量的瓶颈时,我们就必须对这些“自动化”的技术实施必要的监控和调节。
Java 的自动内存管理主要是针对对象内存的回收和对象内存的分配。同时,Java 自动内存管理最核心的功能是 堆 内存中对象的分配与回收。
Java 堆是垃圾收集器管理的主要区域,因此也被称作GC 堆(Garbage Collected Heap).从垃圾回收的角度,由于现在收集器基本都采用分代垃圾收集算法,所以 Java 堆还可以细分为:新生代和老年代:再细致一点有:Eden 空间、From Survivor、**To Survivor **空间等。进一步划分的目的是更好地回收内存,或者更快地分配内存。
堆空间的基本结构:
堆中几乎放着所有的对象实例,对堆垃圾回收前的第一步就是要判断那些对象已经死亡(即不能再被任何途径使用的对象)。
给对象中添加一个引用计数器,每当有一个地方引用它,计数器就加 1;当引用失效,计数器就减 1;任何时候计数器为 0 的对象就是不可能再被使用的。
这个方法实现简单,效率高,但是目前主流的虚拟机中并没有选择这个算法来管理内存,其最主要的原因是它很难解决对象之间相互循环引用的问题。 所谓对象之间的相互引用问题,如下面代码所示:除了对象 objA 和 objB 相互引用着对方之外,这两个对象之间再无任何引用。但是他们因为互相引用对方,导致它们的引用计数器都不为 0,于是引用计数算法无法通知 GC 回收器回收他们。
public class ReferenceCountingGc {
Object instance = null;
public static void main(String[] args) {
ReferenceCountingGc objA = new ReferenceCountingGc();
ReferenceCountingGc objB = new ReferenceCountingGc();
objA.instance = objB;
objB.instance = objA;
objA = null;
objB = null;
}
}
引入一些列称为GC Roots的对象(类静态属性中引用的对象、常量引用的对象、虚拟机栈中引用的对象、本地方法栈中引用的对象)作为起点从这些节点开始向下搜索,节点所走过的路径称为引用链,当一个对象到 GC Roots 没有任何引用链相连的话,则证明此对象是不可用的。
在Java技术体系里面,固定可作为GC Roots的对象包括以下几种:
- 在虚拟机栈(栈帧中的本地变量表)中引用的对象,譬如各个线程被调用的方法堆栈中使用到的参数、局部变量、临时变量等。
- 在方法区中类静态属性引用的对象,譬如Java类的引用类型静态变量。
- 在方法区中常量引用的对象,譬如字符串常量池(StringTable)里的引用。
- 在本地方法栈中JNI(即通常所说的Native方法)引用的对象。
- Java虚拟机内部的引用,如基本数据类型对应的Class对象,一些常驻的异常对象(比如NullPointExcepiton、OutOfMemoryError)等,还有系统类加载器。
- **所有被同步锁(synchronized关键字)**持有的对象。
- 反映Java虚拟机内部情况的JMXBean、JVMTI中注册的回调、本地代码缓存等
无论是通过引用计数法判断对象引用数量,还是通过可达性分析法判断对象的引用链是否可达,判定对象的存活都与“引用”有关。
JDK1.2 之前,Java 中引用的定义很传统:如果 reference 类型的数据存储的数值代表的是另一块内存的起始地址,就称这块内存代表一个引用。
JDK1.2 以后,Java 对引用的概念进行了扩充,将引用分为强引用、软引用、弱引用、虚引用四种(引用强度逐渐减弱)
强引用是最传统的“引用”的定义,是指在程序代码之中普遍存在的引用赋值,即类似“Object obj=new Object()”这种引用关系。无论任何情况下,只要强引用关系还存在,垃圾收集器就永远不会回收掉被引用的对象。
软引用是用来描述一些还有用,但非必须的对象。只被软引用关联着的对象,在系统将要发生内存溢出异常前,会把这些对象列进回收范围之中进行第二次回收,如果这次回收还没有足够的内存,才会抛出内存溢出异常。在JDK1.2版之后提供了SoftReference类来实现软引用。软引用可用来实现内存敏感的高速缓存
软引用可以和一个引用队列(ReferenceQueue)联合使用,如果软引用所引用的对象被垃圾回收,JAVA 虚拟机就会把这个软引用加入到与之关联的引用队列中。
弱引用也是用来描述那些非必须对象,但是它的强度比软引用更弱一些,被弱引用关联的对象只能生存到下一次垃圾收集发生为止。当垃圾收集器开始工作,无论当前内存是否足够,都会回收掉只被弱引用关联的对象。在JDK 1.2版之后提供了WeakReference类来实现弱引用。
弱引用可以和一个引用队列(ReferenceQueue)联合使用,如果弱引用所引用的对象被垃圾回收,Java 虚拟机就会把这个弱引用加入到与之关联的引用队列中。
"虚引用"顾名思义,就是形同虚设,与其他几种引用都不同,虚引用并不会决定对象的生命周期。如果一个对象仅持有虚引用,那么它就和没有任何引用一样,在任何时候都可能被垃圾回收。
虚引用主要用来跟踪对象被垃圾回收的活动。
虚引用与软引用和弱引用的一个区别在于: 虚引用必须和引用队列(ReferenceQueue)联合使用。当垃圾回收器准备回收一个对象时,如果发现它还有虚引用,就会在回收对象的内存之前,把这个虚引用加入到与之关联的引用队列中。程序可以通过判断引用队列中是否已经加入了虚引用,来了解被引用的对象是否将要被垃圾回收。程序如果发现某个虚引用已经被加入到引用队列,那么就可以在所引用的对象的内存被回收之前采取必要的行动。
特别注意,在程序设计中一般很少使用弱引用与虚引用,使用软引用的情况较多,这是因为软引用可以加速 JVM 对垃圾内存的回收速度,可以维护系统的运行安全,防止内存溢出(OutOfMemory)等问题的产生。
即使在可达性分析法中不可达的对象,也并非是“非死不可”的,这时候它们暂时处于“缓刑阶段”,要真正宣告一个对象死亡,至少要经历两次标记过程;可达性分析法中不可达的对象被第一次标记并且进行一次筛选,筛选的条件是此对象是否有必要执行 finalize 方法。当对象没有覆盖 finalize 方法,或 finalize 方法已经被虚拟机调用过时,虚拟机将这两种情况视为没有必要执行。
被判定为需要执行的对象将会被放在一个队列中进行第二次标记,除非这个对象与引用链上的任何一个对象建立关联,否则就会被真的回收。
有些人认为方法区(如HotSpot虚拟机中的元空间或者永久代)是没有垃圾收集行为的,《Java虚拟机规范》中提到过可以不要求虚拟机在方法区中实现垃圾收集,事实上也确实有未实现或未能完整实现方法区类型卸载的收集器存在(如JDK 11时期的ZGC收集器就不支持类卸载),方法区垃圾收集的“性价比”通常也是比较低的:在Java堆中,尤其是在新生代中,对常规应用进行一次垃圾收集通常可以回收70%至99%的内存空间,相比之下,方法区回收囿于苛刻的判定条件,其区域垃圾收集的回收成果往往远低于此。
方法区的垃圾收集主要回收两部分内容:废弃的常量和不再使用的类型。回收废弃常量与回收Java堆中的对象非常类似。
运行时常量池主要回收的是废弃的常量。那么,我们如何判断一个常量是废弃常量呢?
假如在常量池中存在字符串 "abc",如果当前没有任何 String 对象引用该字符串常量的话,就说明常量 "abc" 就是废弃常量,如果这时发生内存回收的话而且有必要的话,"abc" 就会被系统清理出常量池。
判定一个常量是否“废弃”还是相对简单,而要判定一个类型是否属于“不再被使用的类”的条件就比较苛刻了。需要同时满足下面三个条件:
- 该类所有的实例都已经被回收,也就是Java堆中不存在该类及其任何派生子类的实例。
- 加载该类的类加载器已经被回收,这个条件除非是经过精心设计的可替换类加载器的场景,如OSGi、JSP的重加载等,否则通常是很难达成的。
- 该类对应的java.lang.Class对象没有在任何地方被引用,无法在任何地方通过反射访问该类的方法。
该算法分为“标记”和“清除”阶段:首先标记出所有需要回收的对象,在标记完成后统一回收所有被标记的对象。它是最基础的收集算法,后续的算法都是对其不足进行改进得到。这种垃圾收集算法会带来两个明显的问题:
- 效率问题
- 空间问题(标记清除后会产生大量不连续的碎片)
为了解决效率问题,“复制”收集算法出现了。它可以将内存分为大小相同的两块,每次使用其中的一块。当这一块的内存使用完后,就将还存活的对象复制到另一块去,然后再把使用的空间一次清理掉。这样就使每次的内存回收都是对内存区间的一半进行回收。
根据老年代的特点提出的一种标记算法,标记过程仍然与“标记-清除”算法一样,但后续步骤不是直接对可回收对象回收,而是让所有存活的对象向一端移动,然后直接清理掉端边界以外的内存。
当前虚拟机的垃圾收集都采用分代收集算法,这种算法没有什么新的思想,只是根据对象存活周期的不同将内存分为几块。一般将 java 堆分为新生代和老年代,这样我们就可以根据各个年代的特点选择合适的垃圾收集算法。
比如在新生代中,每次收集都会有大量对象死去,所以可以选择复制算法,只需要付出少量对象的复制成本就可以完成每次垃圾收集。而老年代的对象存活几率是比较高的,而且没有额外的空间对它进行分配担保,所以我们必须选择“标记-清除”或“标记-整理”算法进行垃圾收集。
延伸面试问题: HotSpot 为什么要分为新生代和老年代?
根据上面的对分代收集算法的介绍回答。
使用“经典”二字是为了与几款目前仍处于实验状态,但执行效果上有革命性改进的高性能低延迟收集器区分开来,这些经典的收集器尽管已经算不上是最先进的技术,但它们曾在实践中千锤百炼,足够成熟,基本上可认为是现在到未来两、三年内,能够在商用生产环境上放心使用的全部垃圾收集器了
虽然垃圾收集器的技术在不断进步,但直到现在还没有最好的收集器出现,更加不存在“万能”的收集器,所以我们选择的只是对具体应用最合适的收集器。这点不需要多加论述就能证明:如果有一种放之四海皆准、任何场景下都适用的完美收集器存在,HotSpot虚拟机完全没必要实现那么多种不同的收集器了。
Serial(串行)收集器收集器是最基本、历史最悠久的垃圾收集器了。大家看名字就知道这个收集器是一个单线程收集器了。它的 “单线程” 的意义不仅仅意味着它只会使用一条垃圾收集线程去完成垃圾收集工作,更重要的是它在进行垃圾收集工作的时候必须暂停其他所有的工作线程( "Stop The World" ),直到它收集结束。
新生代采用复制算法,老年代采用标记-整理算法。
虚拟机的设计者们当然知道 Stop The World 带来的不良用户体验,所以在后续的垃圾收集器设计中停顿时间在不断缩短(仍然还有停顿,寻找最优秀的垃圾收集器的过程仍然在继续)。
但是 Serial 收集器有没有优于其他垃圾收集器的地方呢?当然有,它简单而高效(与其他收集器的单线程相比)。Serial 收集器由于没有线程交互的开销,自然可以获得很高的单线程收集效率。Serial 收集器对于运行在 Client 模式下的虚拟机来说是个不错的选择。
ParNew 收集器其实就是 Serial 收集器的多线程版本,除了使用多线程进行垃圾收集外,其余行为(控制参数、收集算法、回收策略等等)和 Serial 收集器完全一样。
**新生代采用复制算法,老年代采用标记-整理算法。 **
它是许多运行在 Server 模式下的虚拟机的首要选择,除了 Serial 收集器外,只有它能与 CMS 收集器(真正意义上的并发收集器,后面会介绍到)配合工作。
并行和并发概念补充:
- 并行(Parallel) :指多条垃圾收集线程并行工作,但此时用户线程仍然处于等待状态。
- 并发(Concurrent):指用户线程与垃圾收集线程同时执行(但不一定是并行,可能会交替执行),用户程序在继续运行,而垃圾收集器运行在另一个 CPU 上。
Parallel Scavenge 收集器也是使用复制算法的多线程收集器,它看上去几乎和ParNew都一样。 那么它有什么特别之处呢?
-XX:+UseParallelGC
使用 Parallel 收集器+ 老年代串行
-XX:+UseParallelOldGC
使用 Parallel 收集器+ 老年代并行
Parallel Scavenge 收集器关注点是吞吐量(高效率的利用 CPU)。CMS 等垃圾收集器的关注点更多的是用户线程的停顿时间(提高用户体验)。所谓吞吐量就是 CPU 中用于运行用户代码的时间与 CPU 总消耗时间的比值。 Parallel Scavenge 收集器提供了很多参数供用户找到最合适的停顿时间或最大吞吐量,如果对于收集器运作不太了解的话,手工优化存在困难的话可以选择把内存管理优化交给虚拟机去完成也是一个不错的选择。 新生代采用复制算法,老年代采用标记-整理算法。
Serial 收集器的老年代版本,它同样是一个单线程收集器。它主要有两大用途:一种用途是在 JDK1.5 以及以前的版本中与 Parallel Scavenge 收集器搭配使用,另一种用途是作为 CMS 收集器的后备方案。
Parallel Scavenge 收集器的老年代版本。使用多线程和“标记-整理”算法。在注重吞吐量以及 CPU 资源的场合,都可以优先考虑 Parallel Scavenge 收集器和 Parallel Old 收集器。
CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。它非常符合在注重用户体验的应用上使用。
CMS(Concurrent Mark Sweep)收集器是 HotSpot 虚拟机第一款真正意义上的并发收集器,它第一次实现了让垃圾收集线程与用户线程(基本上)同时工作。
从名字中的Mark Sweep这两个词可以看出,CMS 收集器是一种 “标记-清除”算法实现的,它的运作过程相比于前面几种垃圾收集器来说更加复杂一些。整个过程分为四个步骤:
- 初始标记: 暂停所有的其他线程,并记录下直接与 root 相连的对象,速度很快 ;
- 并发标记: 同时开启 GC 和用户线程,用一个闭包结构去记录可达对象。但在这个阶段结束,这个闭包结构并不能保证包含当前所有的可达对象。因为用户线程可能会不断的更新引用域,所以 GC 线程无法保证可达性分析的实时性。所以这个算法里会跟踪记录这些发生引用更新的地方。
- 重新标记: 重新标记阶段就是为了修正并发标记期间因为用户程序继续运行而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间一般会比初始标记阶段的时间稍长,远远比并发标记阶段时间短
- 并发清除: 开启用户线程,同时 GC 线程开始对为标记的区域做清扫。
从它的名字就可以看出它是一款优秀的垃圾收集器,主要优点:并发收集、低停顿。但是它有下面三个明显的缺点:
- 对 CPU 资源敏感;
- 无法处理浮动垃圾;
- 它使用的回收算法-“标记-清除”算法会导致收集结束时会有大量空间碎片产生。
G1 (Garbage-First) 是一款面向服务器的垃圾收集器,主要针对配备多颗处理器及大容量内存的机器. 以极高概率满足 GC 停顿时间要求的同时,还具备高吞吐量性能特征.
被视为 JDK1.7 中 HotSpot 虚拟机的一个重要进化特征。它具备一下特点:
- 并行与并发:G1 能充分利用 CPU、多核环境下的硬件优势,使用多个 CPU(CPU 或者 CPU 核心)来缩短 Stop-The-World 停顿时间。部分其他收集器原本需要停顿 Java 线程执行的 GC 动作,G1 收集器仍然可以通过并发的方式让 java 程序继续执行。
- 分代收集:虽然 G1 可以不需要其他收集器配合就能独立管理整个 GC 堆,但是还是保留了分代的概念。
- 空间整合:与 CMS 的“标记--清理”算法不同,G1 从整体来看是基于“标记整理”算法实现的收集器;从局部上来看是基于“复制”算法实现的。
- 可预测的停顿**:**这是 G1 相对于 CMS 的另一个大优势,降低停顿时间是 G1 和 CMS 共同的关注点,但 G1 除了追求低停顿外,还能建立可预测的停顿时间模型,能让使用者明确指定在一个长度为 M 毫秒的时间片段内。
G1 收集器的运作大致分为以下几个步骤:
- 初始标记
- 并发标记
- 最终标记
- 筛选回收
G1 收集器在后台维护了一个优先列表,每次根据允许的收集时间,优先选择回收价值最大的 Region(这也就是它的名字 Garbage-First 的由来)。这种使用 Region 划分内存空间以及有优先级的区域回收方式,保证了 G1 收集器在有限时间内可以尽可能高的收集效率(把内存化整为零)。