forked from datawhalechina/self-llm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
76 lines (69 loc) · 3.23 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
from datasets import Dataset
import pandas as pd
from transformers import AutoTokenizer, AutoModelForCausalLM, DataCollatorForSeq2Seq, TrainingArguments, HfArgumentParser, Trainer
import os
import torch
from peft import LoraConfig, TaskType, get_peft_model
from dataclasses import dataclass, field
import deepspeed
deepspeed.ops.op_builder.CPUAdamBuilder().load()
@dataclass
class FinetuneArguments:
# 微调参数
# field:dataclass 函数,用于指定变量初始化
model_path: str = field(default="./OpenBMB/miniCPM-bf32")
# 用于处理数据集的函数
def process_func(example):
MAX_LENGTH = 512 # Llama分词器会将一个中文字切分为多个token,因此需要放开一些最大长度,保证数据的完整性
input_ids, attention_mask, labels = [], [], []
instruction = tokenizer(f"<用户>{example['instruction']+example['input']}<AI>", add_special_tokens=False) # add_special_tokens 不在开头加 special_tokens
response = tokenizer(f"{example['output']}", add_special_tokens=False)
input_ids = instruction["input_ids"] + response["input_ids"] + [tokenizer.pad_token_id]
attention_mask = instruction["attention_mask"] + response["attention_mask"] + [1] # 因为eos token咱们也是要关注的所以 补充为1
labels = [-100] * len(instruction["input_ids"]) + response["input_ids"] + [tokenizer.pad_token_id]
if len(input_ids) > MAX_LENGTH: # 做一个截断
input_ids = input_ids[:MAX_LENGTH]
attention_mask = attention_mask[:MAX_LENGTH]
labels = labels[:MAX_LENGTH]
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"labels": labels
}
# loraConfig
config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
target_modules=["q_proj", "v_proj"], # 这个不同的模型需要设置不同的参数,需要看模型中的attention层
inference_mode=False, # 训练模式
r=8, # Lora 秩
lora_alpha=32, # Lora alaph,具体作用参见 Lora 原理
lora_dropout=0.1# Dropout 比例
)
if "__main__" == __name__:
# 解析参数
# Parse 命令行参数
finetune_args, training_args = HfArgumentParser(
(FinetuneArguments, TrainingArguments)
).parse_args_into_dataclasses()
# 处理数据集
# 将JSON文件转换为CSV文件
df = pd.read_json('./huanhuan.json')
ds = Dataset.from_pandas(df)
# 加载tokenizer
tokenizer = AutoTokenizer.from_pretrained(finetune_args.model_path, use_fast=False, trust_remote_code=True)
tokenizer.padding_side = 'right'
tokenizer.pad_token_id = tokenizer.eos_token_id
# 将数据集变化为token形式
tokenized_id = ds.map(process_func, remove_columns=ds.column_names)
# 创建模型并以半精度形式加载
model = AutoModelForCausalLM.from_pretrained(finetune_args.model_path, trust_remote_code=True, torch_dtype=torch.half, device_map={"": int(os.environ.get("LOCAL_RANK") or 0)})
# model = get_peft_model(model, config)
# 使用trainer训练
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_id,
data_collator=DataCollatorForSeq2Seq(tokenizer=tokenizer, padding=True),
)
trainer.train() # 开始训练
trainer.save_model() # 保存模型