forked from Jhy1993/HAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathex_acm3025.py
243 lines (204 loc) · 9.43 KB
/
ex_acm3025.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import time
import numpy as np
import tensorflow as tf
from models import GAT, HeteGAT
from utils import process
# 禁用gpu
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
dataset = 'acm'
checkpt_file = 'pre_trained/{}/{}_allMP.ckpt'.format(dataset, dataset)
# training params
batch_size = 1
nb_epochs = 300#20
patience = 100
lr = 0.004 # learning rate
l2_coef = 0.001 # weight decay
att_size = 128
# numbers of hidden units per each attention head in each layer
hid_units = [8]
n_heads = [1, 1] # additional entry for the output layer
residual = False
nonlinearity = tf.nn.elu
model = HeteGAT
print('Dataset: ' + dataset)
print('----- Opt. hyperparams -----')
print('lr: ' + str(lr))
print('l2_coef: ' + str(l2_coef))
print('----- Archi. hyperparams -----')
print('nb. layers: ' + str(len(hid_units)))
print('nb. units per layer: ' + str(hid_units))
print('nb. attention heads: ' + str(n_heads))
print('residual: ' + str(residual))
print('nonlinearity: ' + str(nonlinearity))
print('model: ' + str(model))
# jhy data
import scipy.io as sio
import scipy.sparse as sp
def sample_mask(idx, l):
"""Create mask."""
mask = np.zeros(l)
mask[idx] = 1
return np.array(mask, dtype=np.bool)
def load_data_dblp(path='/home/jhy/allGAT/acm_hetesim/ACM3025.mat'):
data = sio.loadmat(path)
truelabels, truefeatures = data['label'], data['feature'].astype(float)
N = truefeatures.shape[0]
rownetworks = [data['PAP'] - np.eye(N), data['PLP'] - np.eye(N)] # , data['PTP'] - np.eye(N)]
# truefeatures = sp.csr_matrix(truefeatures)
# network = rownetworks[mp]
# network[network > 0] = 1
y = truelabels
train_idx = data['train_idx']
val_idx = data['val_idx']
test_idx = data['test_idx']
train_mask = sample_mask(train_idx, y.shape[0])
val_mask = sample_mask(val_idx, y.shape[0])
test_mask = sample_mask(test_idx, y.shape[0])
y_train = np.zeros(y.shape)
y_val = np.zeros(y.shape)
y_test = np.zeros(y.shape)
y_train[train_mask, :] = y[train_mask, :]
y_val[val_mask, :] = y[val_mask, :]
y_test[test_mask, :] = y[test_mask, :]
# return selected_idx, selected_idx_2
print('y_train:{}, y_val:{}, y_test:{}, train_idx:{}, val_idx:{}, test_idx:{}'.format(y_train.shape,
y_val.shape,
y_test.shape,
train_idx.shape,
val_idx.shape,
test_idx.shape))
return rownetworks, truefeatures, y_train, y_val, y_test, train_mask, val_mask, test_mask
adj_list, features, y_train, y_val, y_test, train_mask, val_mask, test_mask = load_data_dblp()
nb_nodes = features.shape[0]
ft_size = features.shape[1]
nb_classes = y_train.shape[1]
# adj = adj.todense()
features = features[np.newaxis] # [1, nb_node, ft_size]
adj_list = [adj[np.newaxis] for adj in adj_list]
y_train = y_train[np.newaxis]
y_val = y_val[np.newaxis]
y_test = y_test[np.newaxis]
train_mask = train_mask[np.newaxis]
val_mask = val_mask[np.newaxis]
test_mask = test_mask[np.newaxis]
biases_list = [process.adj_to_bias(adj, [nb_nodes], nhood=1) for adj in adj_list]
with tf.Graph().as_default():
with tf.name_scope('input'):
ftr_in = tf.placeholder(dtype=tf.float32, shape=(
batch_size, nb_nodes, ft_size))
bias_in_list = [tf.placeholder(dtype=tf.float32, shape=(
batch_size, nb_nodes, nb_nodes)) for _ in range(len(biases_list))]
lbl_in = tf.placeholder(dtype=tf.int32, shape=(
batch_size, nb_nodes, nb_classes))
msk_in = tf.placeholder(dtype=tf.int32, shape=(batch_size, nb_nodes))
attn_drop = tf.placeholder(dtype=tf.float32, shape=())
ffd_drop = tf.placeholder(dtype=tf.float32, shape=())
is_train = tf.placeholder(dtype=tf.bool, shape=())
# forward
logits, final_embedding, att_val, coef_list = model.inference(ftr_in, nb_classes, nb_nodes, is_train,
attn_drop, ffd_drop,
bias_mat_list=bias_in_list,
hid_units=hid_units, n_heads=n_heads,
residual=residual, activation=nonlinearity,
mp_att_size=att_size, # 0805最后的挣扎
return_coef=True
)
# cal masked_loss
log_resh = tf.reshape(logits, [-1, nb_classes])
lab_resh = tf.reshape(lbl_in, [-1, nb_classes])
msk_resh = tf.reshape(msk_in, [-1])
loss = model.masked_softmax_cross_entropy(log_resh, lab_resh, msk_resh)
accuracy = model.masked_accuracy(log_resh, lab_resh, msk_resh)
# optimzie
train_op = model.training(loss, lr, l2_coef)
saver = tf.train.Saver()
init_op = tf.group(tf.global_variables_initializer(),
tf.local_variables_initializer())
vlss_mn = np.inf
vacc_mx = 0.0
curr_step = 0
best_nmi = 0
with tf.Session(config=config) as sess:
sess.run(init_op)
train_loss_avg = 0
train_acc_avg = 0
val_loss_avg = 0
val_acc_avg = 0
for epoch in range(nb_epochs):
tr_step = 0
tr_size = features.shape[0]
# ================ training ============
while tr_step * batch_size < tr_size:
fd1 = {ftr_in: features[tr_step * batch_size:(tr_step + 1) * batch_size]}
fd2 = {i: d[tr_step * batch_size:(tr_step + 1) * batch_size]
for i, d in zip(bias_in_list, biases_list)}
fd3 = {lbl_in: y_train[tr_step * batch_size:(tr_step + 1) * batch_size],
msk_in: train_mask[tr_step * batch_size:(tr_step + 1) * batch_size],
is_train: True,
attn_drop: 0.6,
ffd_drop: 0.6}
fd = fd1
fd.update(fd2)
fd.update(fd3)
_, loss_value_tr, acc_tr, att_val_train = sess.run([train_op, loss, accuracy, att_val],
feed_dict=fd)
train_loss_avg += loss_value_tr
train_acc_avg += acc_tr
tr_step += 1
vl_step = 0
vl_size = features.shape[0]
# ============= val =================
while vl_step * batch_size < vl_size:
fd1 = {ftr_in: features[vl_step * batch_size:(vl_step + 1) * batch_size]}
fd2 = {i: d[vl_step * batch_size:(vl_step + 1) * batch_size]
for i, d in zip(bias_in_list, biases_list)}
fd3 = {lbl_in: y_train[vl_step * batch_size:(vl_step + 1) * batch_size],
msk_in: train_mask[vl_step * batch_size:(vl_step + 1) * batch_size],
is_train: False,
attn_drop: 0.0,
ffd_drop: 0.0}
fd = fd1
fd.update(fd2)
fd.update(fd3)
loss_value_vl, acc_vl = sess.run([loss, accuracy],
feed_dict=fd)
val_loss_avg += loss_value_vl
val_acc_avg += acc_vl
vl_step += 1
# import pdb; pdb.set_trace()
print('Epoch: {}, att_val: {}'.format(epoch, np.mean(att_val_train, axis=0)))
print('Training: loss = %.5f, acc = %.5f | Val: loss = %.5f, acc = %.5f' %
(train_loss_avg / tr_step, train_acc_avg / tr_step,
val_loss_avg / vl_step, val_acc_avg / vl_step))
if val_acc_avg / vl_step >= vacc_mx or val_loss_avg / vl_step <= vlss_mn:
if val_acc_avg / vl_step >= vacc_mx and val_loss_avg / vl_step <= vlss_mn:
vacc_early_model = val_acc_avg / vl_step
vlss_early_model = val_loss_avg / vl_step
saver.save(sess, checkpt_file)
vacc_mx = np.max((val_acc_avg / vl_step, vacc_mx))
vlss_mn = np.min((val_loss_avg / vl_step, vlss_mn))
curr_step = 0
else:
curr_step += 1
if curr_step == patience:
print('Early stop! Min loss: ', vlss_mn,
', Max accuracy: ', vacc_mx)
print('Early stop model validation loss: ',
vlss_early_model, ', accuracy: ', vacc_early_model)
break
train_loss_avg = 0
train_acc_avg = 0
val_loss_avg = 0
val_acc_avg = 0
sess.close()
print('start knn, kmean.....')
xx = np.expand_dims(jhy_final_embedding, axis=0)[test_mask]
yy = y_test[test_mask]
from jhyexps import my_KNN, my_Kmeans, my_TSNE, my_Linear
my_KNN(xx, yy)
my_Kmeans(xx, yy)
my_TSNE(xx, yy, title='HANE')
my_Linear(xx, yy)