forked from dimtsoun/PID-Autotuning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathautotuning_v2.m
198 lines (158 loc) · 4.31 KB
/
autotuning_v2.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
%%%%%%%%%
%
% Autotuning Algorithm for reference tracking using second order systems
%
% Dimitrios Tsounis
% The University of Manchester
% April 2016
%
%%%%%%%
clear all;
clc;
% Values of damping, natural frequency and SS gain
damping_ratio = (2:8)/10;
natural_freq = (3:10);
b0 = 1;
%variables used to selected different frequency/damping values
i = 1; % natural frequency
j = 1; % damping ratio
% Calculating the values of the nominator and denominator of the TF
a = b0*(natural_freq(i)^2);
b = 2*natural_freq(i)*damping_ratio(j);
c = natural_freq(i)^2;
k =1;
%Simulink model required
model = 'reference_tracking';
load_system(model)
max_prop_gain = 1;
max_int_gain = 1;
% kp_initial = rand*max_prop_gain;
% ki_initial = rand*max_int_gain;
kp_initial = 3;
ki_initial = 3;
%population creation
gains = [ kp_initial ki_initial;
0.5*kp_initial ki_initial;
kp_initial 0.5*ki_initial;
0.5*kp_initial 0.5*ki_initial
2*kp_initial 2*ki_initial];
disp(gains);
kp = kp_initial;
ki = ki_initial;
kp_p1 = num2str(kp);
ki_p2 = num2str(ki);
s_kp_p1 = strcat('Initial P Gain: ', kp_p1);
s_ki_p2 = strcat('Initial I Gain: ',ki_p2);
initial_gains = [s_kp_p1 char(10) s_ki_p2]; % textbox element
sim(model);
fig1 = figure;
plot(tout,simout.signals.values(:,1),tout,simout.signals.values(:,2));
xlabel('Time (s)');
ylabel('Amplitude');
title('');
legend('Reference Signal', 'Initial Response');
annotation('textbox',[0 0 1 1],'String',initial_gains,'Fontsize',13);
fig2 = figure;
hold on;
while true
iter_counter = 1;
sum(1:5) = 0;
input(1:5) = 0;
% response(1:5) = 0;
for i=1:size(gains,1)
kp = gains(i,1);
ki = gains(i,2);
sim(model);
input = simout.signals.values(:,1);
response = simout.signals.values(:,2);
plot(tout,input,tout,response);
xlabel('Time (s)');
ylabel('Amplitude');
title('');
% fitness function definition
for j=1:size(response,1)
sum(iter_counter) = sum(iter_counter) + abs(input(j)-response(j));
end
iter_counter = iter_counter + 1;
end
[sum_sorted,index] = sort(sum);
sgra(k) = sum_sorted(1);
kpgr(k) = gains(index(1),1);
kigr(k) = gains(index(1),2);
if sum_sorted(1)<= 5
disp('System Tuned');
kp = gains(index(1),1);
ki = gains(index(1),2);
%%%%
kp_p1 = num2str(kp);
ki_p2 = num2str(ki);
s_kp_p1 = strcat('Final P Gain: ', kp_p1);
s_ki_p2 = strcat('Final I Gain: ',ki_p2);
final_gains = [s_kp_p1 char(10) s_ki_p2]; % textbox element
%%%
sim(model);
fig3 = figure;
plot(tout,simout.signals.values(:,1),tout,simout.signals.values(:,2));
xlabel('Time (s)');
ylabel('Amplitude');
title('');
legend('Reference Signal', 'Final Response');
annotation('textbox',[0 0 1 1], 'String',final_gains,'Fontsize',13);
disp(gains(index(1),1));
disp(gains(index(1),2));
break;
end
kp_new = gains(index(1),1);
ki_new = gains(index(1),2);
if k>2
if last_kp == kp_new
kp_new = (rand)*kp_new;
end
if last_ki == ki_new
ki_new = (rand)*ki_new;
end
end
% gains = [ kp_new ki_new;
% 0.5*kp_new ki_new;
% kp_new 0.5*ki_new;
% 0.5*kp_new 0.5*ki_new
% 2*kp_new 2*ki_new];
%
gains = [ kp_new ki_new;
rand*kp_new ki_new;
kp_new rand*ki_new;
0.5*kp_new 0.5*ki_new
10*rand*kp_new 10*rand*ki_new];
last_kp = kp_new;
last_ki = ki_new;
disp('New Iteration');
if k == 100
disp('No Tuning');
break;
else
k = k + 1;
end
end
xaxis = (1:k);
fig4 = figure;
plot(xaxis,sgra);
xlabel('Iterations');
ylabel('Fitness Function');
title('');
xbounds = xlim();
set(gca, 'xtick', xbounds(1):1:xbounds(2));
fig5 = figure;
plot(xaxis,kpgr,xaxis,kigr);
xlabel('Iterations');
ylabel('Gains');
legend('Kp','Ki');
xbounds = xlim();
set(gca, 'xtick', xbounds(1):1:xbounds(2));
saveas(fig1,'initial.bmp');
saveas(fig2,'intermediate.bmp');
saveas(fig3,'final_response.bmp');
saveas(fig4,'fitness_function.bmp');
saveas(fig5,'gains_variation.bmp');
xbounds = xlim();
set(gca, 'xtick', xbounds(1):1:xbounds(2));