forked from RandyGaul/cute_headers
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcute_math.h
785 lines (655 loc) · 26.7 KB
/
cute_math.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
#if !defined( CUTE_MATH_H )
/*
------------------------------------------------------------------------------
Licensing information can be found at the end of the file.
------------------------------------------------------------------------------
cute_math.h - v1.1
Revision history:
1.0 (12/21/2016) initial release
1.1 (10/05/2017) vfloat data type added, removed out-dated comments,
added compute_mouse_ray, added more m3 ops, added lookAt
SUMMARY:
A professional level implementation of SIMD intrinsics, suitable for creating high
performance output.
The __vectorcall convention needs to be used to build on MSVC. Set the flag /Gv to
setup this convention by default (recommended). This flag will not affect class
methods, so annotate methods with CUTE_MATH_VCALL as appropriate. Note that when compiling
and linking to dynamic libs, older libs are probably not aware of __vectorcall and
will need __cdecl (this is what CUTE_MATH_CDECL is for). Statically linking will bring
no problems, as __vectorcall will be applied to the statically linked lib.
This header is not particularly customized for general graphics programming since
there are no functions implemented here for 4x4 matrices. Personally I never use
4x4 matrices and instead prefer to represent affine transormations in block form:
Ax + b, where A is a 3x3 rotation matrix (and possibly scale), and b performs the
affine translation. A 4x4 matrix would store an additional row of { 0, 0, 0, 1 },
so in most cases this bottom row is wasted anyways. This is all my own preference
so feel free to adjust the header and add in 4x4 matrix routines as desired.
*/
#include <stdint.h>
#include <xmmintrin.h>
#if 1
#include <assert.h>
#define CUTE_MATH_ASSERT assert
#else
#define CUTE_MATH_ASSERT( ... )
#endif
#define CUTE_MATH_SHUFFLE( a, b, x, y, z ) _mm_shuffle_ps( a, b, _MM_SHUFFLE( 3, z, y, x ) )
#define CUTE_MATH_CDECL __cdecl
#define CUTE_MATH_VCALL __vectorcall
#ifdef _WIN32
#define CUTE_MATH_INLINE __forceinline
#define CUTE_MATH_SELECTANY extern const __declspec( selectany )
#else
#define CUTE_MATH_INLINE __attribute__((always_inline))
#define CUTE_MATH_SELECTANY extern const __attribute__((selectany))
#endif
struct v3
{
CUTE_MATH_INLINE v3( ) { }
CUTE_MATH_INLINE explicit v3( float x, float y, float z ) { m = _mm_set_ps( 0, z, y, x ); }
CUTE_MATH_INLINE explicit v3( float a ) { m = _mm_set_ps( 0, a, a, a ); }
CUTE_MATH_INLINE explicit v3( float *a ) { m = _mm_set_ps( 0, a[ 2 ], a[ 1 ], a[ 0 ] ); }
CUTE_MATH_INLINE explicit v3( __m128 v ) { m = v; }
CUTE_MATH_INLINE operator __m128( ) { return m; }
CUTE_MATH_INLINE operator __m128( ) const { return m; }
__m128 m;
};
struct vfloat
{
CUTE_MATH_INLINE vfloat( ) { }
CUTE_MATH_INLINE explicit vfloat( float a ) { m = _mm_set_ps( 0, a, a, a ); }
CUTE_MATH_INLINE explicit vfloat( v3& a ) { m = _mm_shuffle_ps( a, a, _MM_SHUFFLE( 0, 0, 0, 0 ) ); }
CUTE_MATH_INLINE explicit vfloat( __m128 v ) { m = v; }
CUTE_MATH_INLINE operator __m128( ) { return m; }
CUTE_MATH_INLINE operator __m128( ) const { return m; }
float to_float( ) { return _mm_cvtss_f32( m ); }
float to_float( ) const { return _mm_cvtss_f32( m ); }
operator float( ) { return to_float( ); }
operator float( ) const { return to_float( ); }
__m128 m;
};
CUTE_MATH_INLINE vfloat getx( v3 a ) { return vfloat( CUTE_MATH_SHUFFLE( a, a, 0, 0, 0 ) ); }
CUTE_MATH_INLINE vfloat gety( v3 a ) { return vfloat( CUTE_MATH_SHUFFLE( a, a, 1, 1, 1 ) ); }
CUTE_MATH_INLINE vfloat getz( v3 a ) { return vfloat( CUTE_MATH_SHUFFLE( a, a, 2, 2, 2 ) ); }
CUTE_MATH_INLINE v3 splatx( v3 a ) { return v3( CUTE_MATH_SHUFFLE( a, a, 0, 0, 0 ) ); }
CUTE_MATH_INLINE v3 splaty( v3 a ) { return v3( CUTE_MATH_SHUFFLE( a, a, 1, 1, 1 ) ); }
CUTE_MATH_INLINE v3 splatz( v3 a ) { return v3( CUTE_MATH_SHUFFLE( a, a, 2, 2, 2 ) ); }
struct m3
{
CUTE_MATH_INLINE v3 operator[]( int i )
{
switch ( i )
{
case 0: return x;
case 1: return y;
case 2: return z;
default: CUTE_MATH_ASSERT( 0 ); return x;
}
}
v3 x;
v3 y;
v3 z;
};
CUTE_MATH_INLINE m3 rows( v3 x, v3 y, v3 z )
{
m3 m;
m.x = x;
m.y = y;
m.z = z;
return m;
}
// helpers for static data
struct v3_consti
{
union { uint32_t i[ 4 ]; __m128 m; };
CUTE_MATH_INLINE operator v3( ) const { return v3( m ); }
CUTE_MATH_INLINE operator __m128( ) const { return m; }
};
struct v3_constf
{
union { float f[ 4 ]; __m128 m; };
CUTE_MATH_INLINE operator v3( ) const { return v3( m ); }
CUTE_MATH_INLINE operator __m128( ) const { m; }
};
CUTE_MATH_SELECTANY v3_consti tmMaskSign = { 0x80000000, 0x80000000, 0x80000000, 0x80000000 };
CUTE_MATH_SELECTANY v3_consti tmMaskAllBits = { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000 };
CUTE_MATH_SELECTANY v3_constf tmMaskBasis = { 0.57735027f, 0.57735027f, 0.57735027f };
// the binary ops
CUTE_MATH_INLINE v3 operator+( v3 a, v3 b ) { return v3( _mm_add_ps( a, b ) ); }
CUTE_MATH_INLINE v3 operator-( v3 a, v3 b ) { return v3( _mm_sub_ps( a, b ) ); }
CUTE_MATH_INLINE v3& operator+=( v3 &a, v3 b ) { a = a + b; return a; }
CUTE_MATH_INLINE v3& operator-=( v3 &a, v3 b ) { a = a - b; return a; }
CUTE_MATH_INLINE vfloat operator+( vfloat a, vfloat b ) { return vfloat( _mm_add_ps( a, b ) ); }
CUTE_MATH_INLINE vfloat operator-( vfloat a, vfloat b ) { return vfloat( _mm_sub_ps( a, b ) ); }
CUTE_MATH_INLINE vfloat operator*( vfloat a, vfloat b ) { return vfloat( _mm_mul_ps( a, b ) ); }
CUTE_MATH_INLINE vfloat operator/( vfloat a, vfloat b ) { return vfloat( _mm_div_ps( a, b ) ); }
CUTE_MATH_INLINE vfloat& operator+=( vfloat &a, vfloat b ) { a = a + b; return a; }
CUTE_MATH_INLINE vfloat& operator-=( vfloat &a, vfloat b ) { a = a - b; return a; }
CUTE_MATH_INLINE vfloat& operator*=( vfloat &a, vfloat b ) { a = a * b; return a; }
CUTE_MATH_INLINE vfloat& operator/=( vfloat &a, vfloat b ) { a = a / b; return a; }
CUTE_MATH_INLINE vfloat operator+( vfloat a, float b ) { return vfloat( _mm_add_ps( a, vfloat( b ) ) ); }
CUTE_MATH_INLINE vfloat operator-( vfloat a, float b ) { return vfloat( _mm_sub_ps( a, vfloat( b ) ) ); }
CUTE_MATH_INLINE vfloat operator*( vfloat a, float b ) { return vfloat( _mm_mul_ps( a, vfloat( b ) ) ); }
CUTE_MATH_INLINE vfloat operator/( vfloat a, float b ) { return vfloat( _mm_div_ps( a, vfloat( b ) ) ); }
CUTE_MATH_INLINE vfloat& operator+=( vfloat &a, float b ) { a = a + b; return a; }
CUTE_MATH_INLINE vfloat& operator-=( vfloat &a, float b ) { a = a - b; return a; }
CUTE_MATH_INLINE vfloat& operator*=( vfloat &a, float b ) { a = a * b; return a; }
CUTE_MATH_INLINE vfloat& operator/=( vfloat &a, float b ) { a = a / b; return a; }
CUTE_MATH_INLINE vfloat operator+( float a, vfloat b ) { return vfloat( _mm_add_ps( vfloat( a ), b ) ); }
CUTE_MATH_INLINE vfloat operator-( float a, vfloat b ) { return vfloat( _mm_sub_ps( vfloat( a ), b ) ); }
CUTE_MATH_INLINE vfloat operator*( float a, vfloat b ) { return vfloat( _mm_mul_ps( vfloat( a ), b ) ); }
CUTE_MATH_INLINE vfloat operator/( float a, vfloat b ) { return vfloat( _mm_div_ps( vfloat( a ), b ) ); }
CUTE_MATH_INLINE float& operator+=( float &a, vfloat b ) { a = a + b; return a; }
CUTE_MATH_INLINE float& operator-=( float &a, vfloat b ) { a = a - b; return a; }
CUTE_MATH_INLINE float& operator*=( float &a, vfloat b ) { a = a * b; return a; }
CUTE_MATH_INLINE float& operator/=( float &a, vfloat b ) { a = a / b; return a; }
// generally comparisons are followed up with a mask(v3) call (or any(v3))
CUTE_MATH_INLINE v3 operator==( v3 a, v3 b ) { return v3( _mm_cmpeq_ps( a, b ) ); }
CUTE_MATH_INLINE v3 operator!=( v3 a, v3 b ) { return v3( _mm_cmpneq_ps( a, b ) ); }
CUTE_MATH_INLINE v3 operator<( v3 a, v3 b ) { return v3( _mm_cmplt_ps( a, b ) ); }
CUTE_MATH_INLINE v3 operator>( v3 a, v3 b ) { return v3( _mm_cmpgt_ps( a, b ) ); }
CUTE_MATH_INLINE v3 operator<=( v3 a, v3 b ) { return v3( _mm_cmple_ps( a, b ) ); }
CUTE_MATH_INLINE v3 operator>=( v3 a, v3 b ) { return v3( _mm_cmpge_ps( a, b ) ); }
CUTE_MATH_INLINE v3 operator-( v3 a ) { return v3( _mm_setzero_ps( ) ) - a; }
CUTE_MATH_INLINE vfloat operator==( vfloat a, vfloat b ) { return vfloat( _mm_cmpeq_ps( a, b ) ); }
CUTE_MATH_INLINE vfloat operator!=( vfloat a, vfloat b ) { return vfloat( _mm_cmpneq_ps( a, b ) ); }
CUTE_MATH_INLINE vfloat operator<( vfloat a, vfloat b ) { return vfloat( _mm_cmplt_ps( a, b ) ); }
CUTE_MATH_INLINE vfloat operator>( vfloat a, vfloat b ) { return vfloat( _mm_cmpgt_ps( a, b ) ); }
CUTE_MATH_INLINE vfloat operator<=( vfloat a, vfloat b ) { return vfloat( _mm_cmple_ps( a, b ) ); }
CUTE_MATH_INLINE vfloat operator>=( vfloat a, vfloat b ) { return vfloat( _mm_cmpge_ps( a, b ) ); }
CUTE_MATH_INLINE vfloat operator-( vfloat a ) { return vfloat( _mm_setzero_ps( ) ) - a; }
CUTE_MATH_INLINE unsigned mask( vfloat a ) { return _mm_movemask_ps( a ) & 7; }
CUTE_MATH_INLINE int any( vfloat a ) { return mask( a ) != 0; }
CUTE_MATH_INLINE int all( vfloat a ) { return mask( a ) == 7; }
CUTE_MATH_INLINE unsigned mask( v3 a ) { return _mm_movemask_ps( a ) & 7; }
CUTE_MATH_INLINE int any( v3 a ) { return mask( a ) != 0; }
CUTE_MATH_INLINE int all( v3 a ) { return mask( a ) == 7; }
CUTE_MATH_INLINE v3 setx( v3 a, float x )
{
v3 t0 = v3( _mm_set_ss( x ) );
return v3( _mm_move_ss( a, t0 ) );
}
CUTE_MATH_INLINE v3 sety( v3 a, float y )
{
v3 t0 = v3( CUTE_MATH_SHUFFLE( a, a, 1, 0, 2 ) );
v3 t1 = v3( _mm_set_ss( y ) );
v3 t2 = v3( _mm_move_ss( t0, t1 ) );
return v3( CUTE_MATH_SHUFFLE( t2, t2, 1, 0, 2 ) );
}
CUTE_MATH_INLINE v3 setz( v3 a, float z )
{
v3 t0 = v3( CUTE_MATH_SHUFFLE( a, a, 2, 1, 0 ) );
v3 t1 = v3( _mm_set_ss( z ) );
v3 t2 = v3( _mm_move_ss( t0, t1 ) );
return v3( CUTE_MATH_SHUFFLE( t2, t2, 2, 1, 0 ) );
}
CUTE_MATH_INLINE v3 operator*( v3 a, v3 b ) { return v3( _mm_mul_ps( a, b ) ); }
CUTE_MATH_INLINE v3 operator/( v3 a, v3 b ) { return v3( _mm_div_ps( a, b ) ); }
CUTE_MATH_INLINE v3& operator*=( v3& a, v3 b ) { a = a * b; return a; }
CUTE_MATH_INLINE v3& operator/=( v3& a, v3 b ) { a = a / b; return a; }
CUTE_MATH_INLINE v3 operator*( v3 a, vfloat b ) { return v3( _mm_mul_ps( a, b ) ); }
CUTE_MATH_INLINE v3 operator/( v3 a, vfloat b ) { return v3( _mm_div_ps( a, b ) ); }
CUTE_MATH_INLINE v3& operator*=( v3& a, vfloat b ) { a = a * b; return a; }
CUTE_MATH_INLINE v3& operator/=( v3& a, vfloat b ) { a = a / b; return a; }
CUTE_MATH_INLINE v3 operator*( v3 a, float b ) { return v3( _mm_mul_ps( a, vfloat( b ) ) ); }
CUTE_MATH_INLINE v3 operator/( v3 a, float b ) { return v3( _mm_div_ps( a, vfloat( b ) ) ); }
CUTE_MATH_INLINE v3& operator*=( v3& a, float b ) { a = a * b; return a; }
CUTE_MATH_INLINE v3& operator/=( v3& a, float b ) { a = a / b; return a; }
// f must be 16 byte aligned
CUTE_MATH_INLINE v3 load( float* f ) { return v3( _mm_load_ps( f ) ); }
CUTE_MATH_INLINE void store( v3 v, float* f ) { _mm_store_ps( f, v ); }
CUTE_MATH_INLINE vfloat dot( v3 a, v3 b )
{
v3 t0 = v3( _mm_mul_ps( a, b ) );
v3 t1 = v3( CUTE_MATH_SHUFFLE( t0, t0, 1, 0, 0 ) );
v3 t2 = v3( _mm_add_ss( t0, t1 ) );
v3 t3 = v3( CUTE_MATH_SHUFFLE( t2, t2, 2, 0, 0 ) );
v3 t4 = v3( _mm_add_ss( t2, t3 ) );
return vfloat( t4 );
}
CUTE_MATH_INLINE v3 cross( v3 a, v3 b )
{
v3 t0 = v3( CUTE_MATH_SHUFFLE( a, a, 1, 2, 0 ) );
v3 t1 = v3( CUTE_MATH_SHUFFLE( b, b, 2, 0, 1 ) );
v3 t2 = v3( _mm_mul_ps( t0, t1 ) );
t0 = v3( CUTE_MATH_SHUFFLE( t0, t0, 1, 2, 0 ) );
t1 = v3( CUTE_MATH_SHUFFLE( t1, t1, 2, 0, 1 ) );
t0 = v3( _mm_mul_ps( t0, t1 ) );
return v3( _mm_sub_ps( t2, t0 ) );
}
CUTE_MATH_INLINE vfloat lengthSq( v3 a ) { return dot( a, a ); }
CUTE_MATH_INLINE vfloat sqrt( vfloat a ) { return vfloat( _mm_sqrt_ps( a ) ); }
CUTE_MATH_INLINE vfloat length( v3 a ) { return sqrt( dot( a, a ) ); }
CUTE_MATH_INLINE v3 abs( v3 a ) { return v3( _mm_andnot_ps( tmMaskSign, a ) ); }
CUTE_MATH_INLINE v3 min( v3 a, v3 b ) { return v3( _mm_min_ps( a, b ) ); }
CUTE_MATH_INLINE v3 max( v3 a, v3 b ) { return v3( _mm_max_ps( a, b ) ); }
CUTE_MATH_INLINE vfloat abs( vfloat a ) { return vfloat( _mm_andnot_ps( tmMaskSign, a ) ); }
CUTE_MATH_INLINE vfloat min( vfloat a, vfloat b ) { return vfloat( _mm_min_ps( a, b ) ); }
CUTE_MATH_INLINE vfloat max( vfloat a, vfloat b ) { return vfloat( _mm_max_ps( a, b ) ); }
CUTE_MATH_INLINE v3 select( v3 a, v3 b, v3 mask ) { return v3( _mm_xor_ps( a, _mm_and_ps( mask, _mm_xor_ps( b, a ) ) ) ); }
CUTE_MATH_INLINE v3 lerp( v3 a, v3 b, vfloat t ) { return a + (b - a) * t; }
// for posterity
// CUTE_MATH_INLINE v3 lerp( v3 a, v3 b, float t ) { return a * (1.0f - t) + b * t; }
// CUTE_MATH_INLINE v3 lerp( v3 a, v3 b, v3 t ) { return a * (1.0f - t) + b * t; }
CUTE_MATH_INLINE vfloat hmin( v3 a )
{
v3 t0 = v3( CUTE_MATH_SHUFFLE( a, a, 1, 0, 2 ) );
a = min( a, t0 );
v3 t1 = v3( CUTE_MATH_SHUFFLE( a, a, 2, 0, 1 ) );
return vfloat( min( a, t1 ) );
}
CUTE_MATH_INLINE vfloat hmax( v3 a )
{
v3 t0 = v3( CUTE_MATH_SHUFFLE( a, a, 1, 0, 2 ) );
a = max( a, t0 );
v3 t1 = v3( CUTE_MATH_SHUFFLE( a, a, 2, 0, 1 ) );
return vfloat( max( a, t1 ) );
}
CUTE_MATH_INLINE v3 norm( v3 a )
{
vfloat t0 = dot( a, a );
vfloat t1 = sqrt( t0 );
v3 t2 = v3( _mm_div_ps( a, t1 ) );
return v3( _mm_and_ps( t2, tmMaskAllBits ) );
}
CUTE_MATH_INLINE v3 clamp( v3 a, v3 vmin, v3 vmax )
{
v3 t0 = v3( _mm_max_ps( vmin, a ) );
return v3( _mm_min_ps( t0, vmax ) );
}
// sets up a mask of { x ? ~0 : 0, y ? ~0 : 0, z ? ~0 : 0 }
// x, y and z should be 0 or 1
CUTE_MATH_INLINE v3 mask( int x, int y, int z )
{
v3_consti c;
unsigned elements[] = { 0x00000000, 0xFFFFFFFF };
CUTE_MATH_ASSERT( x < 2 && x >= 0 );
CUTE_MATH_ASSERT( y < 2 && y >= 0 );
CUTE_MATH_ASSERT( z < 2 && z >= 0 );
c.i[ 0 ] = elements[ x ];
c.i[ 1 ] = elements[ y ];
c.i[ 2 ] = elements[ z ];
c.i[ 3 ] = elements[ 0 ];
return c;
}
CUTE_MATH_INLINE m3 m3_from_quat( vfloat x, vfloat y, vfloat z, vfloat w )
{
vfloat x2 = x + x;
vfloat y2 = y + y;
vfloat z2 = z + z;
vfloat xx = x * x2;
vfloat xy = x * y2;
vfloat xz = x * z2;
vfloat xw = w * x2;
vfloat yy = y * y2;
vfloat yz = y * z2;
vfloat yw = w * y2;
vfloat zz = z * z2;
vfloat zw = w * z2;
vfloat one = vfloat( 1.0f );
return rows(
v3( one - yy - zz, xy + zw, xz - yw ),
v3( xy - zw, one - xx - zz, yz + xw ),
v3( xz + yw, yz - xw, one - xx - yy )
);
}
CUTE_MATH_INLINE m3 m3_axis_angle( v3 axis, vfloat angle )
{
vfloat s = vfloat( sinf( angle * 0.5f ) );
vfloat c = vfloat( cosf( angle * 0.5f ) );
vfloat x = getx( axis ) * s;
vfloat y = gety( axis ) * s;
vfloat z = getz( axis ) * s;
vfloat w = c;
return m3_from_quat( x, y, z, w );
}
CUTE_MATH_INLINE m3 m3_axis_angle( v3 axis, float angle )
{
return m3_axis_angle( axis, vfloat( angle ) );
}
// Does not preserve 0.0f in w to get rid of extra shuffles.
// Oh well. Anyone have a better idea?
CUTE_MATH_INLINE m3 transpose( m3 a )
{
v3 t0 = v3( _mm_shuffle_ps( a.x, a.y, _MM_SHUFFLE( 1, 0, 1, 0 ) ) );
v3 t1 = v3( _mm_shuffle_ps( a.x, a.y, _MM_SHUFFLE( 2, 2, 2, 2 ) ) );
v3 x = v3( _mm_shuffle_ps( t0, a.z, _MM_SHUFFLE( 0, 0, 2, 0 ) ) );
v3 y = v3( _mm_shuffle_ps( t0, a.z, _MM_SHUFFLE( 0, 1, 3, 1 ) ) );
v3 z = v3( _mm_shuffle_ps( t1, a.z, _MM_SHUFFLE( 0, 2, 2, 0 ) ) );
a.x = x;
a.y = y;
a.z = z;
return a;
}
// a * b
CUTE_MATH_INLINE v3 mul( m3 a, v3 b )
{
v3 x = splatx( b );
v3 y = splaty( b );
v3 z = splatz( b );
x = v3( _mm_mul_ps( x, a.x ) );
y = v3( _mm_mul_ps( y, a.y ) );
z = v3( _mm_mul_ps( z, a.z ) );
v3 t0 = v3( _mm_add_ps( x, y ) );
return v3( _mm_add_ps( t0, z ) );
}
// a^T * b
CUTE_MATH_INLINE v3 mulT( m3 a, v3 b ) { mul( transpose( a ), b ); }
// a * b
CUTE_MATH_INLINE m3 mul( m3 a, m3 b )
{
v3 x = mul( a, b.x );
v3 y = mul( a, b.y );
v3 z = mul( a, b.z );
return rows( x, y, z );
}
// a^T * b
CUTE_MATH_INLINE m3 mulT( m3 a, m3 b ) { return mul( transpose( a ), b ); }
// http://box2d.org/2014/02/computing-a-basis/
CUTE_MATH_INLINE m3 basis( v3 a )
{
// Suppose vector a has all equal components and is a unit vector: a = (s, s, s)
// Then 3*s*s = 1, s = sqrt(1/3) = 0.57735027. This means that at least one component
// of a unit vector must be greater or equal to 0.57735027.
v3 negA = -a;
v3 t0 = v3( CUTE_MATH_SHUFFLE( a, negA, 1, 1, 0 ) );
v3 b0 = v3( CUTE_MATH_SHUFFLE( t0, t0, 0, 2, 3 ) );
t0 = v3( CUTE_MATH_SHUFFLE( a, negA, 2, 2, 1 ) );
v3 b1 = v3( CUTE_MATH_SHUFFLE( t0, t0, 3, 1, 2 ) );
v3 mask = v3( _mm_cmpge_ps( tmMaskBasis, abs( a ) ) );
mask = splatx( mask );
v3 b = select( b0, b1, mask );
b = v3( norm( b ).m );
v3 c = cross( a, b );
return rows( a, b, c );
}
CUTE_MATH_INLINE m3 operator-( m3 a, m3 b )
{
m3 c;
c.x = a.x - b.x;
c.y = a.y - b.y;
c.z = a.z - b.z;
return c;
}
CUTE_MATH_INLINE m3 operator+( m3 a, m3 b )
{
m3 c;
c.x = a.x + b.x;
c.y = a.y + b.y;
c.z = a.z + b.z;
return c;
}
CUTE_MATH_INLINE m3& operator+=( m3& a, m3 b ) { a = a + b; return a; }
CUTE_MATH_INLINE m3& operator-=( m3& a, m3 b ) { a = a - b; return a; }
CUTE_MATH_INLINE m3 operator*( vfloat a, m3 b )
{
m3 c;
c.x = b.x * a;
c.y = b.y * a;
c.z = b.z * a;
return c;
}
CUTE_MATH_INLINE m3 operator*( float a, m3 b )
{
return vfloat( a ) * b;
}
struct transform
{
v3 p; // position
m3 r; // rotation
};
CUTE_MATH_INLINE v3 mul( transform tx, v3 a ) { return mul( tx.r, a ) + tx.p; }
CUTE_MATH_INLINE v3 mulT( transform tx, v3 a ) { return mul( tx.r, a - tx.p ); }
CUTE_MATH_INLINE transform mul( transform a, transform b )
{
transform c;
c.p = mul( a.r, b.p ) + a.p;
c.r = mul( a.r, b.r );
return c;
}
CUTE_MATH_INLINE transform mulT( transform a, transform b )
{
transform c;
c.p = mulT( a.r, b.p - a.p );
c.r = mulT( a.r, b.r );
return c;
}
struct halfspace
{
v3 n;
vfloat d;
};
CUTE_MATH_INLINE v3 origin( halfspace h ) { return h.n * h.d; }
CUTE_MATH_INLINE vfloat distance( halfspace h, v3 p ) { return dot( h.n, p ) - h.d; }
CUTE_MATH_INLINE v3 projected( halfspace h, v3 p ) { return p - h.n * distance( h, p ); }
CUTE_MATH_INLINE halfspace mul( transform a, halfspace b )
{
v3 o = origin( b );
o = mul( a, o );
v3 normal = mul( a.r, b.n );
halfspace c;
c.n = normal;
c.d = dot( o, normal );
return c;
}
CUTE_MATH_INLINE halfspace mulT( transform a, halfspace b )
{
v3 o = origin( b );
o = mulT( a, o );
v3 normal = mulT( a.r, b.n );
halfspace c;
c.n = normal;
c.d = dot( o, normal );
return c;
}
// da and db should be distances to plane, i.e. halfspace::distance
CUTE_MATH_INLINE v3 intersect( v3 a, v3 b, vfloat da, vfloat db )
{
return a + (b - a) * (da / (da - db));
}
// carefully choose kTol, see: http://www.randygaul.net/2014/11/07/robust-parallel-vector-test/
CUTE_MATH_INLINE int parallel( v3 a, v3 b, float kTol )
{
vfloat k = length( a ) / length( b );
v3 bk = b * k;
if ( all( abs( a - bk ) < v3( kTol ) ) ) return 1;
return 0;
}
CUTE_MATH_INLINE m3 outer( v3 u, v3 v )
{
v3 a = v * getx( u );
v3 b = v * gety( u );
v3 c = v * getz( u );
return rows( a, b, c );
}
void lookAt( float* world_to_cam, v3 eye, v3 target, v3 up, float* cam_to_world = 0 )
{
v3 front = norm( target - eye );
v3 side = norm( cross( front, up ) );
v3 top = norm( cross( side, front ) );
world_to_cam[ 0 ] = getx( side );
world_to_cam[ 1 ] = getx( top );
world_to_cam[ 2 ] = -getx( front );
world_to_cam[ 3 ] = 0;
world_to_cam[ 4 ] = gety( side );
world_to_cam[ 5 ] = gety( top );
world_to_cam[ 6 ] = -gety( front );
world_to_cam[ 7 ] = 0;
world_to_cam[ 8 ] = getz( side );
world_to_cam[ 9 ] = getz( top );
world_to_cam[ 10 ] = -getz( front );
world_to_cam[ 11 ] = 0;
v3 x = v3( world_to_cam[ 0 ], world_to_cam[ 4 ], world_to_cam[ 8 ] );
v3 y = v3( world_to_cam[ 1 ], world_to_cam[ 5 ], world_to_cam[ 9 ] );
v3 z = v3( world_to_cam[ 2 ], world_to_cam[ 6 ], world_to_cam[ 10 ] );
world_to_cam[ 12 ] = -dot( x, eye );
world_to_cam[ 13 ] = -dot( y, eye );
world_to_cam[ 14 ] = -dot( z, eye );
world_to_cam[ 15 ] = 1.0f;
if ( cam_to_world )
{
cam_to_world[ 0 ] = getx( side );
cam_to_world[ 1 ] = gety( side );
cam_to_world[ 2 ] = getz( side );
cam_to_world[ 3 ] = 0;
cam_to_world[ 4 ] = getx( top );
cam_to_world[ 5 ] = gety( top );
cam_to_world[ 6 ] = getz( top );
cam_to_world[ 7 ] = 0;
cam_to_world[ 8 ] = -getx( front );
cam_to_world[ 9 ] = -gety( front );
cam_to_world[ 10 ] = -getz( front );
cam_to_world[ 11 ] = 0;
cam_to_world[ 12 ] = getx( eye );
cam_to_world[ 13 ] = gety( eye );
cam_to_world[ 14 ] = getz( eye );
cam_to_world[ 15 ] = 1.0f;
}
}
#if !defined( TINYGL_H )
void tgMulv( float* a, float* b )
{
float result[ 4 ];
result[ 0 ] = a[ 0 ] * b[ 0 ] + a[4] * b[ 1 ] + a[ 8 ] * b[ 2 ] + a[ 12 ] * b[ 3 ];
result[ 1 ] = a[ 1 ] * b[ 0 ] + a[5] * b[ 1 ] + a[ 9 ] * b[ 2 ] + a[ 13 ] * b[ 3 ];
result[ 2 ] = a[ 2 ] * b[ 0 ] + a[6] * b[ 1 ] + a[ 10 ] * b[ 2 ] + a[ 14 ] * b[ 3 ];
result[ 3 ] = a[ 3 ] * b[ 0 ] + a[7] * b[ 1 ] + a[ 11 ] * b[ 2 ] + a[ 15 ] * b[ 3 ];
b[ 0 ] = result[ 0 ];
b[ 1 ] = result[ 1 ];
b[ 2 ] = result[ 2 ];
b[ 3 ] = result[ 3 ];
}
#endif
#include <cmath>
void compute_mouse_ray( float mouse_x, float mouse_y, float fov, float viewport_w, float viewport_h, float* cam_inv, float near_plane_dist, v3* mouse_pos, v3* mouse_dir )
{
float aspect = (float)viewport_w / (float)viewport_h;
float px = 2.0f * aspect * mouse_x / viewport_w - aspect;
float py = -2.0f * mouse_y / viewport_h + 1.0f;
float pz = -1.0f / tanf( fov / 2.0f );
v3 point_in_view_space( px, py, pz );
v3 cam_pos( cam_inv[ 12 ], cam_inv[ 13 ], cam_inv[ 14 ] );
float pf[ 4 ] = { getx( point_in_view_space ), gety( point_in_view_space ), getz( point_in_view_space ), 1.0f };
tgMulv( cam_inv, pf );
v3 point_on_clipping_plane( pf[ 0 ] , pf[ 1 ], pf[ 2 ] );
v3 dir_in_world_space = point_on_clipping_plane - cam_pos;
v3 dir = norm( dir_in_world_space );
v3 cam_forward( cam_inv[ 8 ], cam_inv[ 9 ], cam_inv[ 10 ] );
*mouse_dir = dir;
*mouse_pos = cam_pos + dir * dot( dir, cam_forward ) * vfloat( near_plane_dist );
}
struct q4
{
q4( ) { }
CUTE_MATH_INLINE explicit q4( v3& vector_part, vfloat& scalar_part ) { m = _mm_set_ps( scalar_part, getz( vector_part ), gety( vector_part ), getx( vector_part ) ); }
CUTE_MATH_INLINE explicit q4( float x, float y, float z, float w ) { m = _mm_set_ps( w, z, y, x ); }
CUTE_MATH_INLINE operator __m128( ) { return m; }
CUTE_MATH_INLINE operator __m128( ) const { return m; }
__m128 m;
};
CUTE_MATH_INLINE q4 q3_axis_angle( v3 axis_normalized, vfloat angle )
{
vfloat s = vfloat( sinf( angle * 0.5f ) );
vfloat c = vfloat( cosf( angle * 0.5f ) );
return q4( axis_normalized * s, c );
}
CUTE_MATH_INLINE vfloat getx( q4 a ) { return vfloat( CUTE_MATH_SHUFFLE( a, a, 0, 0, 0 ) ); }
CUTE_MATH_INLINE vfloat gety( q4 a ) { return vfloat( CUTE_MATH_SHUFFLE( a, a, 1, 1, 1 ) ); }
CUTE_MATH_INLINE vfloat getz( q4 a ) { return vfloat( CUTE_MATH_SHUFFLE( a, a, 2, 2, 2 ) ); }
CUTE_MATH_INLINE vfloat getw( q4 a ) { return vfloat( CUTE_MATH_SHUFFLE( a, a, 3, 3, 3 ) ); }
// un-optimized
CUTE_MATH_INLINE q4 norm( q4 q )
{
vfloat x = getx( q );
vfloat y = gety( q );
vfloat z = getz( q );
vfloat w = getw( q );
vfloat d = w * w + x * x + y * y + z * z;
if( d == 0 )
w = vfloat( 1.0 );
d = vfloat( 1.0 ) / sqrtf( d );
if ( d > vfloat( 1.0e-8f ) )
{
x *= d;
y *= d;
z *= d;
w *= d;
}
return q4( x, y, z, w );
}
// un-optimized
CUTE_MATH_INLINE q4 operator*( q4 a, q4 b )
{
return q4(
getw( a ) * getx( b ) + getx( a ) * getw( b ) + gety( a ) * getz( b ) - getz( a ) * gety( b ),
getw( a ) * gety( b ) + gety( a ) * getw( b ) + getz( a ) * getx( b ) - getx( a ) * getz( b ),
getw( a ) * getz( b ) + getz( a ) * getw( b ) + getx( a ) * gety( b ) - gety( a ) * getx( b ),
getw( a ) * getw( b ) - getx( a ) * getx( b ) - gety( a ) * gety( b ) - getz( a ) * getz( b )
);
}
// un-optimized
CUTE_MATH_INLINE q4 integrate( q4 q, v3 w, vfloat h )
{
q4 wq( getx( w ) * h, gety( w ) * h, getz( w ) * h, 0.0f );
wq = wq * q;
q4 q0 = q4(
getx( q ) + getx( wq ) * vfloat( 0.5 ),
gety( q ) + gety( wq ) * vfloat( 0.5 ),
getz( q ) + getz( wq ) * vfloat( 0.5 ),
getw( q ) + getw( wq ) * vfloat( 0.5 )
);
return norm( q0 );
}
// un-optimized
CUTE_MATH_INLINE m3 m3_from_quat( q4 q )
{
return m3_from_quat( getx( q ), gety( q ), getz( q ), getw( q ) );
}
// globals
CUTE_MATH_SELECTANY m3 identity_m3 = rows( v3( 1.0f, 0.0f, 0.0f ), v3( 0.0f, 1.0f, 0.0f ), v3( 0.0f, 0.0f, 1.0f ) );
CUTE_MATH_SELECTANY m3 zero_m3 = rows( v3( 0.0f, 0.0f, 0.0f ), v3( 0.0f, 0.0f, 0.0f ), v3( 0.0f, 0.0f, 0.0f ) );
CUTE_MATH_SELECTANY v3 zero_v3 = v3( 0.0f, 0.0f, 0.0f );
CUTE_MATH_SELECTANY vfloat zero_vf = vfloat( 0.0f );
CUTE_MATH_SELECTANY vfloat one_vf = vfloat( 1.0f );
CUTE_MATH_SELECTANY q4 identity_q4 = q4( 0.0f, 0.0f, 0.0f, 1.0f );
#define CUTE_MATH_H
#endif
/*
------------------------------------------------------------------------------
This software is available under 2 licenses - you may choose the one you like.
------------------------------------------------------------------------------
ALTERNATIVE A - zlib license
Copyright (c) 2017 Randy Gaul http://www.randygaul.net
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from
the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not
be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
------------------------------------------------------------------------------
ALTERNATIVE B - Public Domain (www.unlicense.org)
This is free and unencumbered software released into the public domain.
Anyone is free to copy, modify, publish, use, compile, sell, or distribute this
software, either in source code form or as a compiled binary, for any purpose,
commercial or non-commercial, and by any means.
In jurisdictions that recognize copyright laws, the author or authors of this
software dedicate any and all copyright interest in the software to the public
domain. We make this dedication for the benefit of the public at large and to
the detriment of our heirs and successors. We intend this dedication to be an
overt act of relinquishment in perpetuity of all present and future rights to
this software under copyright law.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
------------------------------------------------------------------------------
*/