Skip to content

Latest commit

 

History

History
67 lines (52 loc) · 2.22 KB

README.md

File metadata and controls

67 lines (52 loc) · 2.22 KB

This code belongs to the "Implementing a CNN for Text Classification in Tensorflow" blog post.

It is slightly simplified implementation of Kim's Convolutional Neural Networks for Sentence Classification paper in Tensorflow.

한글로 소개한 문서는 합성곱 신경망(CNN) 딥러닝을 이용한 한국어 문장 분류를 참고하시기 바랍니다

Requirements

  • Python 3
  • Tensorflow > 0.8
  • Numpy

Training

Print parameters:

./train.py --help
optional arguments:
  -h, --help            show this help message and exit
  --embedding_dim EMBEDDING_DIM
                        Dimensionality of character embedding (default: 128)
  --filter_sizes FILTER_SIZES
                        Comma-separated filter sizes (default: '3,4,5')
  --num_filters NUM_FILTERS
                        Number of filters per filter size (default: 128)
  --l2_reg_lambda L2_REG_LAMBDA
                        L2 regularizaion lambda (default: 0.0)
  --dropout_keep_prob DROPOUT_KEEP_PROB
                        Dropout keep probability (default: 0.5)
  --batch_size BATCH_SIZE
                        Batch Size (default: 64)
  --num_epochs NUM_EPOCHS
                        Number of training epochs (default: 100)
  --evaluate_every EVALUATE_EVERY
                        Evaluate model on dev set after this many steps
                        (default: 100)
  --checkpoint_every CHECKPOINT_EVERY
                        Save model after this many steps (default: 100)
  --allow_soft_placement ALLOW_SOFT_PLACEMENT
                        Allow device soft device placement
  --noallow_soft_placement
  --log_device_placement LOG_DEVICE_PLACEMENT
                        Log placement of ops on devices
  --nolog_device_placement

Train:

./train.py

Evaluating

./eval.py

References