forked from mbzuai-oryx/groundingLMM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_ft.py
681 lines (571 loc) · 32.2 KB
/
train_ft.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
"""
train.py - GLaMM Training on Single Dataset Type
Trains the GLaMM model on one dataset type (Caption, Region, or Segmentation) at a time, iterating thoroughly through
the chosen dataset. This targeted approach is optimal for specialized training on specific downstream task.
"""
import os
import sys
import time
import tqdm
import random
import torch
import argparse
import deepspeed
import numpy as np
import transformers
from functools import partial
from torch.utils.data import ConcatDataset
from peft import LoraConfig, get_peft_model
from torch.utils.tensorboard import SummaryWriter
from model.GLaMM import GLaMMForCausalLM
from model.llava import conversation as conversation_lib
from dataset.dataset import custom_collate_fn
from utils.utils import (DEFAULT_IM_END_TOKEN, DEFAULT_IM_START_TOKEN, AverageMeter, ProgressMeter, dict_to_cuda,
Summary, intersectionAndUnionGPU)
from dataset.gcg_datasets.GranDf_gcg_ds import GranDfDataset, OpenPsgGCGDataset, Flickr30kGCGDataset, RefCOCOgGCGDataset
from dataset.caption_datasets.COCO_Caption_ds import CocoCapDataset
from dataset.caption_datasets.LLavaInstruct_vqa_ds import LLaVAInstructDataset
from dataset.region_datasets.RefCOCO_VG_Region_ds import (RefCocoRegDataset, RefCocoGRegDataset, RefCocoPRegDataset,
VisualGenomeRegDataset)
from dataset.region_datasets.Flickr_Region_ds import Flickr30kRegDataset
from dataset.segm_datasets.Semantic_Segm_ds import SemanticSegmDataset
from dataset.segm_datasets.RefCOCO_Segm_ds import ReferSegmDataset
def parse_args(args):
parser = argparse.ArgumentParser(description="GLaMM Model Training")
# Model-specific settings
parser.add_argument("--version", default="MBZUAI/GLaMM-GranD-Pretrained")
parser.add_argument("--vision_pretrained", default="./checkpoints/sam_vit_h_4b8939.pth", type=str)
parser.add_argument("--vision-tower", default="openai/clip-vit-large-patch14-336", type=str)
parser.add_argument("--conv_type", default="llava_v1", type=str, choices=["llava_v1", "llava_llama_2"])
parser.add_argument("--tune_mm_mlp_adapter", action="store_true")
parser.add_argument("--freeze_mm_mlp_adapter", action="store_true")
parser.add_argument("--mm_use_im_start_end", action="store_true", default=True)
parser.add_argument("--out_dim", default=256, type=int)
parser.add_argument("--image_size", default=1024, type=int, help="Image size for grounding image encoder")
parser.add_argument("--model_max_length", default=1536, type=int)
parser.add_argument("--lora_target_modules", default="q_proj,v_proj", type=str)
parser.add_argument("--with_region", action="store_true", default=True)
parser.add_argument("--mm_vision_select_layer", default=-2, type=int)
parser.add_argument("--pretrain_mm_mlp_adapter", default="", type=str)
parser.add_argument("--precision", default='bf16', type=str)
# Dataset settings
parser.add_argument("--use_cap_data", action="store_true", help="Use caption data")
parser.add_argument("--use_reg_data", action="store_true", help="Use region data")
parser.add_argument("--use_segm_data", action="store_true", help="Use segmentation data")
parser.add_argument("--dataset_dir", default="./data", type=str)
parser.add_argument("--seg_dataset", default="Semantic_Segm||Refer_Segm||RefCoco_GCG||PSG_GCG||Flickr_GCG||GranDf_GCG",
type=str, help="Choose from: Semantic_Segm, Refer_Segm, RefCoco_GCG, GranDf_GCG, PSG_GCG, Flickr_GCG")
parser.add_argument("--segm_sample_rates", default="5,4,3,3,3,1", type=str)
parser.add_argument("--reg_dataset", default="RefCoco_Reg||RefCocoG_Reg||RefCocoP_Reg||VisGen_Reg",
type=str, help="Choose from: RefCoco_Reg, RefCocoG_Reg, RefCocoP_Reg, VisGen_Reg, Flickr_Reg")
parser.add_argument("--reg_sample_rates", default="1,1,1,1", type=str)
parser.add_argument("--cap_dataset", default="CocoCap||LLaVaInstruct", type=str, help="Choose from: CocoCap, LLaVaInstruct")
parser.add_argument("--cap_sample_rates", default="1,1", type=str)
parser.add_argument("--semantic_segm_data", default="ade20k||cocostuff||pascal_part||paco_lvis||mapillary", type=str)
parser.add_argument("--refer_segm_data", default="refcoco||refcoco+||refcocog||refclef", type=str)
parser.add_argument("--vqa_data", default="llava_instruct_150k", type=str)
parser.add_argument("--num_classes_per_sample", default=3, type=int)
# Training settings
parser.add_argument("--pretrained", action="store_true")
parser.add_argument("--resume", default="", type=str)
parser.add_argument("--auto_resume", action="store_true")
parser.add_argument("--weight", default="", type=str)
parser.add_argument("--lr", default=0.0003, type=float)
parser.add_argument("--epochs", default=10, type=int)
parser.add_argument("--steps_per_epoch", default=500, type=int)
parser.add_argument("--batch_size", default=2, type=int, help="batch size per device per step")
parser.add_argument("--grad_accumulation_steps", default=10, type=int)
parser.add_argument("--val_batch_size", default=1, type=int)
parser.add_argument("--workers", default=2, type=int)
parser.add_argument("--lora_r", default=8, type=int)
parser.add_argument("--lora_alpha", default=16, type=int)
parser.add_argument("--lora_dropout", default=0.05, type=float)
parser.add_argument("--ce_loss_weight", default=1.0, type=float)
parser.add_argument("--dice_loss_weight", default=0.5, type=float)
parser.add_argument("--bce_loss_weight", default=2.0, type=float)
parser.add_argument("--beta1", default=0.9, type=float)
parser.add_argument("--beta2", default=0.95, type=float)
parser.add_argument("--gradient_checkpointing", action="store_true", default=True)
parser.add_argument("--train_mask_decoder", action="store_true", default=True)
parser.add_argument("--use_mm_start_end", action="store_true", default=True)
parser.add_argument("--print_freq", default=1, type=int)
parser.add_argument("--start_epoch", default=0, type=int)
parser.add_argument("--local_rank", default=0, type=int, help="node rank")
# Evaluation settings
parser.add_argument("--val_dataset", default="RefCOCOgRegVal", type=str,
help="Choose from: CocoCapVal, RefCOCOgRegVal, VisGenomeRegVal, RefCOCOgSegmVal, PsgGCGVal, "
"RefCocoGCGVal, FlickrGCGVal")
parser.add_argument("--mask_validation", action="store_true")
parser.add_argument("--no_eval", action="store_true")
parser.add_argument("--eval_only", action="store_true")
# Experiment settings
parser.add_argument("--log_base_dir", default="./output", type=str)
parser.add_argument("--exp_name", default="GlamFinetuneOS", type=str)
return parser.parse_args(args)
def initialize_environment(args):
""" Set up logging and model directories. """
args.log_dir = os.path.join(args.log_base_dir, args.exp_name)
if args.local_rank == 0:
os.makedirs(args.log_dir, exist_ok=True)
return SummaryWriter(args.log_dir)
return None
def setup_tokenizer_and_special_tokens(args):
""" Load tokenizer and add special tokens. """
tokenizer = transformers.AutoTokenizer.from_pretrained(
args.version, model_max_length=args.model_max_length, padding_side="right", use_fast=False
)
print('\033[92m' + "---- Initialized tokenizer from: {} ----".format(args.version) + '\033[0m')
tokenizer.pad_token = tokenizer.unk_token
if not args.pretrained:
if args.use_mm_start_end:
tokenizer.add_tokens(
[DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True
)
# modifications specific for regions
reg_tokens = ['<bbox>', '<point>']
# Adding special tokens for pixel grounding
segmentation_tokens = ['[SEG]']
# Adding tokens for GCG
phrase_tokens = ['<p>', '</p>']
special_tokens = reg_tokens + segmentation_tokens + phrase_tokens
tokenizer.add_tokens(special_tokens, special_tokens=True)
args.bbox_token_idx = tokenizer("<bbox>", add_special_tokens=False).input_ids[0]
args.seg_token_idx = tokenizer("[SEG]", add_special_tokens=False).input_ids[0]
args.bop_token_idx = tokenizer("<p>", add_special_tokens=False).input_ids[0]
args.eop_token_idx = tokenizer("</p>", add_special_tokens=False).input_ids[0]
return tokenizer
def initialize_model(args, tokenizer):
""" Initialize the GLaMM model. """
model_args = {k: getattr(args, k) for k in
["train_mask_decoder", "out_dim", "ce_loss_weight", "dice_loss_weight", "bce_loss_weight",
"seg_token_idx", "vision_pretrained", "vision_tower", "use_mm_start_end", "mm_vision_select_layer",
"pretrain_mm_mlp_adapter", "tune_mm_mlp_adapter", "freeze_mm_mlp_adapter", "mm_use_im_start_end",
"with_region", "bbox_token_idx", "eop_token_idx", "bop_token_idx"]}
model_args["num_level_reg_features"] = 4
model = GLaMMForCausalLM.from_pretrained(
args.version, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, **model_args
)
print('\033[92m' + "---- Initialized model from: {} ----".format(args.version) + '\033[0m')
# Configure model tokens
model.config.eos_token_id = tokenizer.eos_token_id
model.config.bos_token_id = tokenizer.bos_token_id
model.config.pad_token_id = tokenizer.pad_token_id
return model
def prepare_model_for_training(model, tokenizer, args):
# Enable input gradients
model.enable_input_require_grads()
model.gradient_checkpointing_enable()
# Initialize vision tower
print(
'\033[92m' + "---- Initialized Global Image Encoder (vision tower) from: {} ----".format(
args.vision_tower
) + '\033[0m'
)
model.get_model().initialize_vision_modules(model.get_model().config)
vision_tower = model.get_model().get_vision_tower()
vision_tower.to(dtype=torch.bfloat16, device=args.local_rank)
# Initialize GLaMM model and adjust requires_grad
if not args.pretrained:
model.get_model().initialize_glamm_model(model.get_model().config)
else:
for param in model.get_model().grounding_encoder.parameters():
param.requires_grad = False
if model.get_model().config.train_mask_decoder:
model.get_model().grounding_encoder.mask_decoder.train()
for param in model.get_model().grounding_encoder.mask_decoder.parameters():
param.requires_grad = True
# Projection layer
model.get_model().text_hidden_fcs.train()
for param in model.get_model().text_hidden_fcs.parameters():
param.requires_grad = True
# Set requires_grad for vision tower and mm projector
for p in vision_tower.parameters():
p.requires_grad = False
for p in model.get_model().mm_projector.parameters():
p.requires_grad = False
# Set requires_grad based on LoRA training
lora_r = args.lora_r
if lora_r == 0:
for p in model.get_model().layers.parameters():
p.requires_grad = True
for p in model.get_model().mm_projector.parameters():
p.requires_grad = True
# Configure conversation library
conversation_lib.default_conversation = conversation_lib.conv_templates[args.conv_type]
# Configure LoRA if applicable
if lora_r > 0:
lora_config = setup_lora_config(model, args)
model = get_peft_model(model, lora_config)
# Resize token embeddings
model.resize_token_embeddings(len(tokenizer))
# Make certain modules trainable
set_trainable_modules(model)
def setup_lora_config(model, args):
""" Configure LoRA settings for the model. """
def find_proj_layers(model, target_modules):
""" Identify projection layers in the model for LoRA adaptation. """
linear_cls = torch.nn.Linear
lora_module_names = set()
for name, module in model.named_modules():
if (isinstance(module, linear_cls) and all(
x not in name for x in ["grounding_encoder", "vision_tower", "mm_projector", "text_hidden_fcs"]
) and any(x in name for x in target_modules)):
lora_module_names.add(name)
return sorted(list(lora_module_names))
# Extracting LoRA target modules
lora_target_modules = args.lora_target_modules.split(",")
lora_module_names = find_proj_layers(model, lora_target_modules)
# Configuring LoRA
lora_config = LoraConfig(
r=args.lora_r, lora_alpha=args.lora_alpha, target_modules=lora_module_names, lora_dropout=args.lora_dropout,
bias="none", task_type="CAUSAL_LM"
)
return lora_config
def set_trainable_modules(model):
""" Make specified modules in the model trainable. """
trainable_modules = ["lm_head", "embed_tokens", "mask_decoder", "text_hidden_fcs", "region_encoder"]
for name, param in model.named_parameters():
if any(module in name for module in trainable_modules):
print(f"Making trainable: {name}, Shape: {param.shape}")
param.requires_grad = True
def count_parameters(model):
total_params = sum(p.numel() for p in model.parameters())
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('\033[92m' + "---- Total parameters: ----{}".format(total_params) + '\033[0m')
print('\033[92m' + "---- Trainable parameters: ----{}".format(trainable_params) + '\033[0m')
count_parameters(model)
def initialize_datasets_and_loaders(args, tokenizer):
world_size = torch.cuda.device_count()
args.distributed = world_size > 1
# Common dataset arguments
common_ds_args = {"dataset_dir": args.dataset_dir, "tokenizer": tokenizer,
"global_image_encoder": args.vision_tower,
"epoch_samples": args.batch_size * args.grad_accumulation_steps * args.steps_per_epoch * world_size,
"precision": args.precision, "image_size": args.image_size,
"num_classes_per_sample": args.num_classes_per_sample}
cap_dataset_classes = {"CocoCap": CocoCapDataset,
"LLaVaInstruct": LLaVAInstructDataset,
}
reg_dataset_classes = {"RefCoco_Reg": RefCocoRegDataset,
"RefCocoG_Reg": RefCocoGRegDataset,
"RefCocoP_Reg": RefCocoPRegDataset,
"VisGen_Reg": VisualGenomeRegDataset,
"Flickr_Reg": Flickr30kRegDataset,
}
seg_dataset_classes = {"Semantic_Segm": SemanticSegmDataset,
"Refer_Segm": ReferSegmDataset,
"PSG_GCG": OpenPsgGCGDataset,
"RefCoco_GCG": RefCOCOgGCGDataset,
"GranDf_GCG": GranDfDataset,
"Flickr_GCG": Flickr30kGCGDataset,
}
# Train datasets
if args.use_cap_data:
train_datasets = [cap_dataset_classes[ds_name](**common_ds_args, random_sampling=False)
for ds_name in args.cap_dataset.split("||")]
elif args.use_reg_data:
train_datasets = [reg_dataset_classes[ds_name](**common_ds_args, random_sampling=False)
for ds_name in args.reg_dataset.split("||")]
elif args.use_segm_data:
train_datasets = []
for ds_name in args.seg_dataset.split('||'):
seg_dataset_class = seg_dataset_classes.get(ds_name)
if seg_dataset_class:
if seg_dataset_class == ReferSegmDataset:
all_datasets = args.refer_segm_data.split("||")
for d in all_datasets:
dataset_class = seg_dataset_class(**common_ds_args, random_sampling=False, refer_segm_data=d)
dataset_class._set_len(len(dataset_class.refer_segm_data[d]['images']))
train_datasets.append(dataset_class)
elif seg_dataset_class == SemanticSegmDataset:
all_datasets = args.semantic_segm_data.split("||")
for d in all_datasets:
dataset_class = seg_dataset_class(**common_ds_args, random_sampling=False, refer_segm_data=d)
dataset_class._set_len(len(dataset_class.semantic_segm_data[d]['images']))
train_datasets.append(dataset_class)
else:
train_datasets.append(seg_dataset_class(**common_ds_args))
else:
train_datasets = []
# Assert that exactly one dataset type is set
dataset_types_set = sum([args.use_cap_data, args.use_reg_data, args.use_segm_data])
assert dataset_types_set == 1, "Exactly one dataset type must be set"
world_size = torch.cuda.device_count()
# Summing lengths of all datasets
total_length = sum(len(dataset) for dataset in train_datasets)
print(f"Training with {total_length} examples.")
# Calculate steps per epoch
effective_batch_size = args.batch_size * args.grad_accumulation_steps * world_size
steps_per_epoch = total_length // effective_batch_size
# modify steps per epoch
args.steps_per_epoch = steps_per_epoch
# Concatenating datasets
train_dataset = torch.utils.data.ConcatDataset(train_datasets)
# Validation datasets
val_datasets = []
if not args.no_eval:
val_dataset_classes = {'CocoCapVal': CocoCapDataset,
'RefCOCOgRegVal': RefCocoGRegDataset,
'VisGenomeRegVal': VisualGenomeRegDataset,
'RefCOCOgSegmVal': ReferSegmDataset,
'PsgGCGVal': OpenPsgGCGDataset,
'RefCocoGCGVal': RefCOCOgGCGDataset,
'FlickrGCGVal': Flickr30kGCGDataset,
}
for val_dataset_name in args.val_dataset.split('|'):
val_dataset_class = val_dataset_classes.get(val_dataset_name)
if val_dataset_class:
if val_dataset_class == ReferSegmDataset:
# Modify this if other datasets in refer_segm_data need to be included in val
refer_segm_data = 'refcocog'
all_datasets = refer_segm_data.split("||")
for d in all_datasets:
val_dataset_class = val_dataset_class(
**common_ds_args, validation=True, refer_segm_data=d, split='val')
val_dataset_class._set_len(len(val_dataset_class.refer_segm_data[d]['images']))
val_datasets.append(val_dataset_class)
else:
val_datasets.append(val_dataset_class(**common_ds_args, validation=True))
return train_dataset, val_datasets
def setup_data_loaders(args, train_dataset, val_datasets, tokenizer):
sampler_args = {"shuffle": True, "drop_last": False}
train_loader_args = {"batch_size": args.batch_size, "shuffle": False, "num_workers": args.workers,
"pin_memory": False}
val_loader_args = {"batch_size": args.val_batch_size, "shuffle": False, "num_workers": args.workers,
"pin_memory": False}
collate_fn_args_train = partial(
custom_collate_fn, tokenizer=tokenizer, use_mm_start_end=args.use_mm_start_end, local_rank=args.local_rank,
inference=False
)
inference_mode = args.mask_validation
collate_fn_args_val = partial(
custom_collate_fn, tokenizer=tokenizer, use_mm_start_end=args.use_mm_start_end, local_rank=args.local_rank,
inference=inference_mode
)
# Training loaders
train_loader = torch.utils.data.DataLoader(
train_dataset, sampler=torch.utils.data.distributed.DistributedSampler(
train_dataset, **sampler_args
), collate_fn=collate_fn_args_train, **train_loader_args
)
# Validation loader
val_loader = None
if val_datasets:
combined_val_datasets = ConcatDataset(val_datasets)
val_loader = torch.utils.data.DataLoader(
combined_val_datasets, **val_loader_args, collate_fn=collate_fn_args_val,
sampler=torch.utils.data.distributed.DistributedSampler(combined_val_datasets, **sampler_args), )
return train_loader, val_loader
def initialize_deepspeed(model, tokenizer, args):
ds_config = {"train_micro_batch_size_per_gpu": args.batch_size,
"gradient_accumulation_steps": args.grad_accumulation_steps,
"optimizer": {"type": "AdamW", "params": {"lr": args.lr, "weight_decay": 0.0,
"betas": (args.beta1, args.beta2)}},
"scheduler": {"type": "WarmupDecayLR",
"params": {"total_num_steps": args.epochs * args.steps_per_epoch, "warmup_min_lr": 0,
"warmup_max_lr": args.lr, "warmup_num_steps": 100, "warmup_type": "linear"}},
"fp16": {"enabled": args.precision == "fp16"}, "bf16": {"enabled": args.precision == "bf16"},
"gradient_clipping": 1.0,
"zero_optimization": {"stage": 2, "contiguous_gradients": True, "overlap_comm": True,
"reduce_scatter": True, "reduce_bucket_size": 5e8,
"allgather_bucket_size": 5e8}, }
model_engine, optimizer, _, scheduler = deepspeed.initialize(
model=model, model_parameters=model.parameters(), collate_fn=partial(
custom_collate_fn, tokenizer=tokenizer, use_mm_start_end=args.use_mm_start_end, local_rank=args.local_rank
), config=ds_config
)
return model_engine, optimizer, scheduler
def resume_training_from_checkpoint(model_engine, args):
if args.auto_resume and not args.resume:
resume = os.path.join(args.log_dir, "ckpt_model")
if os.path.exists(resume):
args.resume = resume
if args.resume:
load_path, client_state = model_engine.load_checkpoint(args.resume)
with open(os.path.join(args.resume, "latest"), "r") as f:
ckpt_dir = f.readlines()[0].strip()
args.start_epoch = int(ckpt_dir.replace("global_step", "")) // args.steps_per_epoch
print(f"Resume training from {args.resume}, start from epoch {args.start_epoch}")
def main(args):
tokenizer = setup_tokenizer_and_special_tokens(args)
model = initialize_model(args, tokenizer)
prepare_model_for_training(model, tokenizer, args)
train_dataset, val_datasets = initialize_datasets_and_loaders(args, tokenizer)
model_engine, optimizer, scheduler = initialize_deepspeed(model, tokenizer, args)
resume_training_from_checkpoint(model_engine, args)
train_loader, val_loader = setup_data_loaders(args, train_dataset, val_datasets, tokenizer)
dataset_iter = iter(train_loader)
writer = initialize_environment(args)
if args.eval_only:
cur_val_loss = validate_model_performance(val_loader, model_engine, 0, writer, args)[0]
exit()
epoch_seeds = [random.randint(0, 100000) for _ in range(args.epochs)]
best_giou, best_ciou, best_val_loss = 0.0, 0.0, np.inf
for epoch in range(args.start_epoch, args.epochs):
random.seed(epoch_seeds[epoch])
dataset_iter = train(train_loader, model_engine, epoch, scheduler, writer, dataset_iter, args)
if args.mask_validation:
giou, ciou = validate_model_performance(val_loader, model_engine, epoch, writer, args)
is_best = giou > best_giou
best_giou = max(giou, best_giou)
best_ciou = ciou if is_best else best_ciou
if args.local_rank == 0: # Log the progress
print(f"Epoch: {epoch}, giou: {giou}, ciou: {ciou}, best_giou: {best_giou}, best_ciou: {best_ciou}")
save_checkpoint(model_engine, args, epoch, 'giou-ciou', f"{giou:.4f}-{ciou:.4f}", is_best)
else:
cur_val_loss = validate_model_performance(val_loader, model_engine, epoch, writer, args)
is_best = cur_val_loss < best_val_loss
best_val_loss = min(cur_val_loss, best_val_loss)
if args.local_rank == 0: # Log the progress
print(f"Epoch: {epoch}, Current Validation Loss: {cur_val_loss:.4f}, Best Validation Loss: {best_val_loss:}")
save_checkpoint(model_engine, args, epoch, 'loss', f"{cur_val_loss:.4f}", is_best)
def save_checkpoint(model_engine, args, epoch, metric_name, metric_value, is_best):
""" Saves the model checkpoint. """
# If the checkpoint is the best, save it in ckpt_model_best, else in ckpt_model_last_epoch
save_dir_name = "ckpt_model_best" if is_best else "ckpt_model_last_epoch"
save_dir = os.path.join(args.log_dir, save_dir_name)
# Ensure the directory exists
if args.local_rank == 0:
os.makedirs(save_dir, exist_ok=True)
ckpt_filename = f"epoch_{epoch}_val_{metric_name}_{metric_value}.pth"
torch.save({"epoch": epoch, f"val_{metric_name}": metric_value}, os.path.join(save_dir, ckpt_filename))
torch.distributed.barrier()
model_engine.save_checkpoint(save_dir)
def train(data_loader, model, epoch, scheduler, writer, dataset_iter, args):
"""Main training loop."""
def get_next_input(iterator, data_loader):
"""Retrieve next input from the iterator, or reinitialize if necessary."""
try:
return next(iterator), iterator
except StopIteration:
new_iterator = iter(data_loader)
return next(new_iterator), new_iterator
def log_progress():
"""Log training progress."""
if global_step % args.print_freq == 0:
if args.distributed:
for tracker in trackers.values():
tracker.all_reduce()
if args.local_rank == 0:
progress.display(global_step + 1)
for key, tracker in trackers.items():
writer.add_scalar(f"train/{key}", tracker.avg, global_step)
writer.add_scalar("metrics/total_secs_per_batch", batch_time.avg, global_step)
writer.add_scalar("metrics/data_secs_per_batch", data_time.avg, global_step)
for tracker in trackers.values():
tracker.reset()
batch_time = AverageMeter("Time", ":.4f")
data_time = AverageMeter("Data", ":.4f")
trackers = {"loss": AverageMeter("Loss", ":.4f"),
"ce_loss": AverageMeter("CeLoss", ":.4f"),
"mask_bce_loss": AverageMeter("MaskBCELoss", ":.4f"),
"mask_dice_loss": AverageMeter("MaskDICELoss", ":.4f"),
"mask_loss": AverageMeter("MaskLoss", ":.4f")}
progress = ProgressMeter(args.steps_per_epoch, list(trackers.values()), prefix=f"Epoch: [{epoch}]")
model.train()
end = time.time()
for global_step in range(args.steps_per_epoch):
for _ in range(args.grad_accumulation_steps):
# Select data loader based on step choice
data_batch, new_iter = get_next_input(dataset_iter, data_loader)
dataset_iter = new_iter
data_time.update(time.time() - end)
# Prepare data and convert relevant tensors to bfloat16
data_batch = dict_to_cuda(data_batch)
for key in ["global_enc_images", "grounding_enc_images"]:
data_batch[key] = data_batch[key].bfloat16()
output_dict = model(**data_batch)
# Update training metrics
for key, tracker in trackers.items():
if key in output_dict:
tracker.update(output_dict[key].item(), data_batch["grounding_enc_images"].size(0))
model.backward(output_dict["loss"])
model.step()
batch_time.update(time.time() - end)
end = time.time()
log_progress()
if global_step != 0:
curr_lr = scheduler.get_last_lr()
if args.local_rank == 0:
writer.add_scalar("train/lr", curr_lr[0], global_step)
return dataset_iter
def validate_model_performance(validation_loader, training_model, current_epoch, tensorboard_writer, args):
if args.mask_validation:
# For use with only segmentation/GCG type datasets
trackers = {"intersection": AverageMeter("Intersec", ":.4f", Summary.SUM),
"union": AverageMeter("Union", ":.4f", Summary.SUM),
"gIoU": AverageMeter("gIoU", ":.4f", Summary.SUM)}
training_model.eval()
for data_batch in tqdm.tqdm(validation_loader):
# Prepare data and convert relevant tensors to bfloat16
data_batch = dict_to_cuda(data_batch)
for key in ["global_enc_images", "grounding_enc_images"]:
data_batch[key] = data_batch[key].bfloat16()
torch.cuda.empty_cache()
# Model inference without gradient tracking
with torch.no_grad():
results = training_model(**data_batch)
predictions = results["pred_masks"]
gt_masks = results["gt_masks"][0].int()
# Note: An error at this line may suggest that the dataset used for validation does not support
# segmentation tasks. Ensure that the dataset is appropriate for segmentation analysis.
predicted_masks = (predictions[0] > 0).int()
assert len(predictions) == 1
intersection, union, accuracy_iou = 0.0, 0.0, 0.0
for target, prediction in zip(gt_masks, predicted_masks):
intersect, union_, _ = intersectionAndUnionGPU(
prediction.contiguous().clone(), target.contiguous(), 2, ignore_index=255
)
intersection += intersect
union += union_
accuracy_iou += intersect / (union_ + 1e-5)
# handles no-object targets
accuracy_iou[union_ == 0] += 1.0
intersection, union = intersection.cpu().numpy(), union.cpu().numpy()
accuracy_iou = accuracy_iou.cpu().numpy() / gt_masks.shape[0]
trackers["intersection"].update(intersection)
trackers["union"].update(union)
trackers["gIoU"].update(accuracy_iou, n=gt_masks.shape[0])
for meter in trackers.values():
meter.all_reduce()
iou_per_class = trackers["intersection"].sum / (trackers["union"].sum + 1e-10)
class_iou = iou_per_class[1]
global_iou = trackers["gIoU"].avg[1]
if args.local_rank == 0:
tensorboard_writer.add_scalar("val/giou", global_iou, current_epoch)
tensorboard_writer.add_scalar("val/ciou", class_iou, current_epoch)
print("giou: {:.4f}, ciou: {:.4f}".format(global_iou, class_iou))
return global_iou, class_iou
else:
# Initializing performance trackers
trackers = {"loss": AverageMeter("Loss", ":.4f"), "ce_loss": AverageMeter("CeLoss", ":.4f"),
"mask_bce_loss": AverageMeter("MaskBCELoss", ":.4f"),
"mask_dice_loss": AverageMeter("MaskDICELoss", ":.4f"),
"mask_loss": AverageMeter("MaskLoss", ":.4f")}
# Prepare model for validation phase
# Hack to get the loss
training_model.train()
for data_batch in tqdm.tqdm(validation_loader):
# Prepare data and convert relevant tensors to bfloat16
data_batch = dict_to_cuda(data_batch)
for key in ["global_enc_images", "grounding_enc_images"]:
data_batch[key] = data_batch[key].bfloat16()
torch.cuda.empty_cache()
# Model inference without gradient tracking
with torch.no_grad():
predictions = training_model(**data_batch)
# Update performance metrics)
for key, tracker in trackers.items():
tracker.update(predictions[key].item(), data_batch["grounding_enc_images"].size(0))
# Synchronize metrics across processes
for tracker in trackers.values():
tracker.all_reduce()
# Calculate average validation loss
avg_val_loss = trackers["ce_loss"].avg
# Tensorboard logging for primary process
if args.local_rank == 0:
tensorboard_writer.add_scalar("val/loss", avg_val_loss, current_epoch)
return avg_val_loss
if __name__ == "__main__":
args = parse_args(sys.argv[1:])
main(args)