forked from dongdongcan/cv_learning_resnet50
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnist.py
83 lines (68 loc) · 3.26 KB
/
mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# 导入NumPy数学工具箱
import numpy as np
# 导入Pandas数据处理工具箱
import pandas as pd
# 从 Keras中导入 mnist数据集
from keras.datasets import mnist
(X_train_image, y_train_lable), (X_test_image, y_test_lable) = mnist.load_data()
# 导入keras.utils工具箱的类别转换工具
from tensorflow.keras.utils import to_categorical
# 给标签增加维度,使其满足模型的需要
# 原始标签,比如训练集标签的维度信息是[60000, 28, 28, 1]
X_train = X_train_image.reshape(60000,28,28,1)
X_test = X_test_image.reshape(10000,28,28,1)
# 特征转换为one-hot编码
y_train = to_categorical(y_train_lable, 10)
y_test = to_categorical(y_test_lable, 10)
# 从 keras 中导入模型
from keras import models
# 从 keras.layers 中导入神经网络需要的计算层
from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D
# 构建一个最基础的连续的模型,所谓连续,就是一层接着一层
model = models.Sequential()
# 第一层为一个卷积,卷积核大小为(3,3), 输出通道32,使用 relu 作为激活函数
model.add(Conv2D(32, (3, 3), activation='relu',
input_shape=(28,28,1)))
# 第二层为一个最大池化层,池化核为(2,2)
# 最大池化的作用,是取出池化核(2,2)范围内最大的像素点代表该区域
# 可减少数据量,降低运算量。
model.add(MaxPooling2D(pool_size=(2, 2)))
# 又经过一个(3,3)的卷积,输出通道变为64,也就是提取了64个特征。
# 同样为 relu 激活函数
model.add(Conv2D(64, (3, 3), activation='relu'))
# 上面通道数增大,运算量增大,此处再加一个最大池化,降低运算
model.add(MaxPooling2D(pool_size=(2, 2)))
# dropout 随机设置一部分神经元的权值为零,在训练时用于防止过拟合
# 这里设置25%的神经元权值为零
model.add(Dropout(0.25))
# 将结果展平成1维的向量
model.add(Flatten())
# 增加一个全连接层,用来进一步特征融合
model.add(Dense(128, activation='relu'))
# 再设置一个dropout层,将50%的神经元权值为零,防止过拟合
# 由于一般的神经元处于关闭状态,这样也可以加速训练
model.add(Dropout(0.5))
# 最后添加一个全连接+softmax激活,输出10个分类,分别对应0-9 这10个数字
model.add(Dense(10, activation='softmax'))
# 编译上述构建好的神经网络模型
# 指定优化器为 rmsprop
# 制定损失函数为交叉熵损失
model.compile(optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['accuracy'])
# 开始训练
model.fit(X_train, y_train, # 指定训练特征集和训练标签集
validation_split = 0.3, # 部分训练集数据拆分成验证集
epochs=5, # 训练轮次为5轮
batch_size=128) # 以128为批量进行训练
# 在测试集上进行模型评估
score = model.evaluate(X_test, y_test)
print('测试集预测准确率:', score[1]) # 打印测试集上的预测准确率
# 预测验证集第一个数据
pred = model.predict(X_test[0].reshape(1, 28, 28, 1))
# 把one-hot码转换为数字
print(pred[0],"转换一下格式得到:",pred.argmax())
# 导入绘图工具包
import matplotlib.pyplot as plt
# 输出这个图片
plt.imshow(X_test[0].reshape(28, 28),cmap='Greys')