forked from scylladb/seastar
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ip.cc
476 lines (425 loc) · 14.6 KB
/
ip.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
/*
* This file is open source software, licensed to you under the terms
* of the Apache License, Version 2.0 (the "License"). See the NOTICE file
* distributed with this work for additional information regarding copyright
* ownership. You may not use this file except in compliance with the License.
*
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*
* Copyright (C) 2014 Cloudius Systems, Ltd.
*
*/
#include "ip.hh"
#include "core/print.hh"
#include "core/future-util.hh"
#include "core/shared_ptr.hh"
#include "toeplitz.hh"
namespace net {
std::ostream& operator<<(std::ostream& os, ipv4_address a) {
auto ip = a.ip;
return fprint(os, "%d.%d.%d.%d",
(ip >> 24) & 0xff,
(ip >> 16) & 0xff,
(ip >> 8) & 0xff,
(ip >> 0) & 0xff);
}
constexpr std::chrono::seconds ipv4::_frag_timeout;
constexpr uint32_t ipv4::_frag_low_thresh;
constexpr uint32_t ipv4::_frag_high_thresh;
ipv4::ipv4(interface* netif)
: _netif(netif)
, _global_arp(netif)
, _arp(_global_arp)
, _host_address(0)
, _gw_address(0)
, _netmask(0)
, _l3(netif, eth_protocol_num::ipv4, [this] { return get_packet(); })
, _rx_packets(_l3.receive([this] (packet p, ethernet_address ea) {
return handle_received_packet(std::move(p), ea); },
[this] (forward_hash& out_hash_data, packet& p, size_t off) {
return forward(out_hash_data, p, off);}))
, _tcp(*this)
, _icmp(*this)
, _udp(*this)
, _l4({ { uint8_t(ip_protocol_num::tcp), &_tcp }, { uint8_t(ip_protocol_num::icmp), &_icmp }, { uint8_t(ip_protocol_num::udp), &_udp }})
, _collectd_regs({
//
// Linearized events: DERIVE:0:u
//
scollectd::add_polled_metric(scollectd::type_instance_id(
"ipv4"
, scollectd::per_cpu_plugin_instance
, "total_operations", "linearizations")
, scollectd::make_typed(scollectd::data_type::DERIVE
, [] { return ipv4_packet_merger::linearizations(); })
),
}) {
_frag_timer.set_callback([this] { frag_timeout(); });
}
bool ipv4::forward(forward_hash& out_hash_data, packet& p, size_t off)
{
auto iph = p.get_header<ip_hdr>(off);
out_hash_data.push_back(iph->src_ip.ip);
out_hash_data.push_back(iph->dst_ip.ip);
auto h = ntoh(*iph);
auto l4 = _l4[h.ip_proto];
if (l4) {
if (h.mf() == false && h.offset() == 0) {
// This IP datagram is atomic, forward according to tcp or udp connection hash
l4->forward(out_hash_data, p, off + sizeof(ip_hdr));
}
// else forward according to ip fields only
}
return true;
}
bool ipv4::in_my_netmask(ipv4_address a) const {
return !((a.ip ^ _host_address.ip) & _netmask.ip);
}
bool ipv4::needs_frag(packet& p, ip_protocol_num prot_num, net::hw_features hw_features) {
if (p.len() + ipv4_hdr_len_min <= hw_features.mtu) {
return false;
}
if ((prot_num == ip_protocol_num::tcp && hw_features.tx_tso) ||
(prot_num == ip_protocol_num::udp && hw_features.tx_ufo)) {
return false;
}
return true;
}
future<>
ipv4::handle_received_packet(packet p, ethernet_address from) {
auto iph = p.get_header<ip_hdr>(0);
if (!iph) {
return make_ready_future<>();
}
// Skip checking csum of reassembled IP datagram
if (!hw_features().rx_csum_offload && !p.offload_info_ref().reassembled) {
checksummer csum;
csum.sum(reinterpret_cast<char*>(iph), sizeof(*iph));
if (csum.get() != 0) {
return make_ready_future<>();
}
}
auto h = ntoh(*iph);
unsigned ip_len = h.len;
unsigned ip_hdr_len = h.ihl * 4;
unsigned pkt_len = p.len();
auto offset = h.offset();
if (pkt_len > ip_len) {
// Trim extra data in the packet beyond IP total length
p.trim_back(pkt_len - ip_len);
} else if (pkt_len < ip_len) {
// Drop if it contains less than IP total length
return make_ready_future<>();
}
// Drop if the reassembled datagram will be larger than maximum IP size
if (offset + p.len() > net::ip_packet_len_max) {
return make_ready_future<>();
}
// FIXME: process options
if (in_my_netmask(h.src_ip) && h.src_ip != _host_address) {
_arp.learn(from, h.src_ip);
}
if (_packet_filter) {
bool handled = false;
auto r = _packet_filter->handle(p, &h, from, handled);
if (handled) {
return std::move(r);
}
}
if (h.dst_ip != _host_address) {
// FIXME: forward
return make_ready_future<>();
}
// Does this IP datagram need reassembly
auto mf = h.mf();
if (mf == true || offset != 0) {
frag_limit_mem();
auto frag_id = ipv4_frag_id{h.src_ip, h.dst_ip, h.id, h.ip_proto};
auto& frag = _frags[frag_id];
if (mf == false) {
frag.last_frag_received = true;
}
// This is a newly created frag_id
if (frag.mem_size == 0) {
_frags_age.push_back(frag_id);
frag.rx_time = clock_type::now();
}
auto added_size = frag.merge(h, offset, std::move(p));
_frag_mem += added_size;
if (frag.is_complete()) {
// All the fragments are received
auto dropped_size = frag.mem_size;
auto& ip_data = frag.data.map.begin()->second;
// Choose a cpu to forward this packet
auto cpu_id = engine().cpu_id();
auto l4 = _l4[h.ip_proto];
if (l4) {
size_t l4_offset = 0;
forward_hash hash_data;
hash_data.push_back(hton(h.src_ip.ip));
hash_data.push_back(hton(h.dst_ip.ip));
l4->forward(hash_data, ip_data, l4_offset);
cpu_id = _netif->hash2cpu(toeplitz_hash(_netif->rss_key(), hash_data));
}
// No need to forward if the dst cpu is the current cpu
if (cpu_id == engine().cpu_id()) {
l4->received(std::move(ip_data), h.src_ip, h.dst_ip);
} else {
auto to = _netif->hw_address();
auto pkt = frag.get_assembled_packet(from, to);
_netif->forward(cpu_id, std::move(pkt));
}
// Delete this frag from _frags and _frags_age
frag_drop(frag_id, dropped_size);
_frags_age.remove(frag_id);
} else {
// Some of the fragments are missing
if (!_frag_timer.armed()) {
frag_arm();
}
}
return make_ready_future<>();
}
auto l4 = _l4[h.ip_proto];
if (l4) {
// Trim IP header and pass to upper layer
p.trim_front(ip_hdr_len);
l4->received(std::move(p), h.src_ip, h.dst_ip);
}
return make_ready_future<>();
}
future<ethernet_address> ipv4::get_l2_dst_address(ipv4_address to) {
// Figure out where to send the packet to. If it is a directly connected
// host, send to it directly, otherwise send to the default gateway.
ipv4_address dst;
if (in_my_netmask(to)) {
dst = to;
} else {
dst = _gw_address;
}
return _arp.lookup(dst);
}
void ipv4::send(ipv4_address to, ip_protocol_num proto_num, packet p, ethernet_address e_dst) {
auto needs_frag = this->needs_frag(p, proto_num, hw_features());
auto send_pkt = [this, to, proto_num, needs_frag, e_dst] (packet& pkt, uint16_t remaining, uint16_t offset) mutable {
auto iph = pkt.prepend_header<ip_hdr>();
iph->ihl = sizeof(*iph) / 4;
iph->ver = 4;
iph->dscp = 0;
iph->ecn = 0;
iph->len = pkt.len();
// FIXME: a proper id
iph->id = 0;
if (needs_frag) {
uint16_t mf = remaining > 0;
// The fragment offset is measured in units of 8 octets (64 bits)
auto off = offset / 8;
iph->frag = (mf << uint8_t(ip_hdr::frag_bits::mf)) | off;
} else {
iph->frag = 0;
}
iph->ttl = 64;
iph->ip_proto = (uint8_t)proto_num;
iph->csum = 0;
iph->src_ip = _host_address;
iph->dst_ip = to;
*iph = hton(*iph);
if (hw_features().tx_csum_ip_offload) {
iph->csum = 0;
pkt.offload_info_ref().needs_ip_csum = true;
} else {
checksummer csum;
csum.sum(reinterpret_cast<char*>(iph), sizeof(*iph));
iph->csum = csum.get();
}
_packetq.push_back(l3_protocol::l3packet{eth_protocol_num::ipv4, e_dst, std::move(pkt)});
};
if (needs_frag) {
uint16_t offset = 0;
uint16_t remaining = p.len();
auto mtu = hw_features().mtu;
while (remaining) {
auto can_send = std::min(uint16_t(mtu - net::ipv4_hdr_len_min), remaining);
remaining -= can_send;
auto pkt = p.share(offset, can_send);
send_pkt(pkt, remaining, offset);
offset += can_send;
}
} else {
// The whole packet can be send in one shot
send_pkt(p, 0, 0);
}
}
std::experimental::optional<l3_protocol::l3packet> ipv4::get_packet() {
// _packetq will be mostly empty here unless it hold remnants of previously
// fragmented packet
if (_packetq.empty()) {
for (size_t i = 0; i < _pkt_providers.size(); i++) {
auto l4p = _pkt_providers[_pkt_provider_idx++]();
if (_pkt_provider_idx == _pkt_providers.size()) {
_pkt_provider_idx = 0;
}
if (l4p) {
auto l4pv = std::move(l4p.value());
send(l4pv.to, l4pv.proto_num, std::move(l4pv.p), l4pv.e_dst);
break;
}
}
}
std::experimental::optional<l3_protocol::l3packet> p;
if (!_packetq.empty()) {
p = std::move(_packetq.front());
_packetq.pop_front();
}
return p;
}
void ipv4::set_host_address(ipv4_address ip) {
_host_address = ip;
_arp.set_self_addr(ip);
}
ipv4_address ipv4::host_address() {
return _host_address;
}
void ipv4::set_gw_address(ipv4_address ip) {
_gw_address = ip;
}
ipv4_address ipv4::gw_address() const {
return _gw_address;
}
void ipv4::set_netmask_address(ipv4_address ip) {
_netmask = ip;
}
ipv4_address ipv4::netmask_address() const {
return _netmask;
}
void ipv4::set_packet_filter(ip_packet_filter * f) {
_packet_filter = f;
}
ip_packet_filter * ipv4::packet_filter() const {
return _packet_filter;
}
void ipv4::frag_limit_mem() {
if (_frag_mem <= _frag_high_thresh) {
return;
}
auto drop = _frag_mem - _frag_low_thresh;
while (drop) {
if (_frags_age.empty()) {
return;
}
// Drop the oldest frag (first element) from _frags_age
auto frag_id = _frags_age.front();
_frags_age.pop_front();
// Drop from _frags as well
auto& frag = _frags[frag_id];
auto dropped_size = frag.mem_size;
frag_drop(frag_id, dropped_size);
drop -= std::min(drop, dropped_size);
}
}
void ipv4::frag_timeout() {
if (_frags.empty()) {
return;
}
auto now = clock_type::now();
for (auto it = _frags_age.begin(); it != _frags_age.end();) {
auto frag_id = *it;
auto& frag = _frags[frag_id];
if (now > frag.rx_time + _frag_timeout) {
auto dropped_size = frag.mem_size;
// Drop from _frags
frag_drop(frag_id, dropped_size);
// Drop from _frags_age
it = _frags_age.erase(it);
} else {
// The further items can only be younger
break;
}
}
if (_frags.size() != 0) {
frag_arm(now);
} else {
_frag_mem = 0;
}
}
void ipv4::frag_drop(ipv4_frag_id frag_id, uint32_t dropped_size) {
_frags.erase(frag_id);
_frag_mem -= dropped_size;
}
int32_t ipv4::frag::merge(ip_hdr &h, uint16_t offset, packet p) {
uint32_t old = mem_size;
unsigned ip_hdr_len = h.ihl * 4;
// Store IP header
if (offset == 0) {
header = p.share(0, ip_hdr_len);
}
// Sotre IP payload
p.trim_front(ip_hdr_len);
data.merge(offset, std::move(p));
// Update mem size
mem_size = header.memory();
for (const auto& x : data.map) {
mem_size += x.second.memory();
}
auto added_size = mem_size - old;
return added_size;
}
bool ipv4::frag::is_complete() {
// If all the fragments are received, ipv4::frag::merge() should merge all
// the fragments into a single packet
auto offset = data.map.begin()->first;
auto nr_packet = data.map.size();
return last_frag_received && nr_packet == 1 && offset == 0;
}
packet ipv4::frag::get_assembled_packet(ethernet_address from, ethernet_address to) {
auto& ip_header = header;
auto& ip_data = data.map.begin()->second;
// Append a ethernet header, needed for forwarding
auto eh = ip_header.prepend_header<eth_hdr>();
eh->src_mac = from;
eh->dst_mac = to;
eh->eth_proto = uint16_t(eth_protocol_num::ipv4);
*eh = hton(*eh);
// Prepare a packet contains both ethernet header, ip header and ip data
ip_header.append(std::move(ip_data));
auto pkt = std::move(ip_header);
auto iph = pkt.get_header<ip_hdr>(sizeof(eth_hdr));
// len is the sum of each fragment
iph->len = hton(uint16_t(pkt.len() - sizeof(eth_hdr)));
// No fragmentation for the assembled datagram
iph->frag = 0;
// Since each fragment's csum is checked, no need to csum
// again for the assembled datagram
offload_info oi;
oi.reassembled = true;
pkt.set_offload_info(oi);
return pkt;
}
void icmp::received(packet p, ipaddr from, ipaddr to) {
auto hdr = p.get_header<icmp_hdr>(0);
if (!hdr || hdr->type != icmp_hdr::msg_type::echo_request) {
return;
}
hdr->type = icmp_hdr::msg_type::echo_reply;
hdr->code = 0;
hdr->csum = 0;
checksummer csum;
csum.sum(reinterpret_cast<char*>(hdr), p.len());
hdr->csum = csum.get();
if (_queue_space.try_wait(p.len())) { // drop packets that do not fit the queue
_inet.get_l2_dst_address(from).then([this, from, p = std::move(p)] (ethernet_address e_dst) mutable {
_packetq.emplace_back(ipv4_traits::l4packet{from, std::move(p), e_dst, ip_protocol_num::icmp});
});
}
}
}