-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path8_name_scope_and_variable_scope.py
65 lines (61 loc) · 2.55 KB
/
8_name_scope_and_variable_scope.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
@Time : 2018/11/13 9:14
@Author : Li Shanlu
@File : name_scope_and_variable_scope.py
@Software : PyCharm
@Description: 解释并验证name_scope和variable_scope的区别
"""
import tensorflow as tf
with tf.name_scope('n_s') as ns:
v1 = tf.Variable([1], name='var1')
v2 = tf.Variable([1], name='var1')
v3 = tf.get_variable(shape=[1], name='var3')
# v4 = tf.get_variable(shape=[1], name='var3') # 重复定义var3,会出错,ValueError: Variable var3 already exists, disallowed.
# ns.reuse_variables() # 报错,AttributeError: 'str' object has no attribute 'reuse_variables'
# v4 = tf.get_variable(shape=[1], name='var3')
with tf.variable_scope('v_s') as vs:
v5 = tf.Variable([1], name='var1')
v6 = tf.Variable([1], name='var2')
v7 = tf.Variable([1], name='var2')
v8 = tf.get_variable(shape=[1], name='var3')
# v9 = tf.get_variable(shape=[1], name='var3') # 重复定义var3,会出错,ValueError: Variable v_s/var3 already exists, disallowed.
vs.reuse_variables() # 这句必须加上才能重复利用上面这个变量,v8和v9其实是一个变量,占用同一块内存
v9 = tf.get_variable(shape=[1], name='var3')
print('v1 name: ', v1.name)
print('v2 name: ', v2.name)
print('v3 name: ', v3.name)
# print('v4 name: ', v4.name)
print('v5 name: ', v5.name)
print('v6 name: ', v6.name)
print('v7 name: ', v7.name)
print('v8 name: ', v8.name)
print('v9 name: ', v9.name)
var_set = tf.trainable_variables()
for i in var_set:
print(i)
"""
>>
v1 name: n_s/var1:0
v2 name: n_s/var1_1:0
v3 name: var3:0
v5 name: n_s/v_s/var1:0
v6 name: n_s/v_s/var2:0
v7 name: n_s/v_s/var2_1:0
v8 name: v_s/var3:0
v9 name: v_s/var3:0
<tf.Variable 'n_s/var1:0' shape=(1,) dtype=int32_ref>
<tf.Variable 'n_s/var1_1:0' shape=(1,) dtype=int32_ref>
<tf.Variable 'var3:0' shape=(1,) dtype=float32_ref>
<tf.Variable 'n_s/v_s/var1:0' shape=(1,) dtype=int32_ref>
<tf.Variable 'n_s/v_s/var2:0' shape=(1,) dtype=int32_ref>
<tf.Variable 'n_s/v_s/var2_1:0' shape=(1,) dtype=int32_ref>
<tf.Variable 'v_s/var3:0' shape=(1,) dtype=float32_ref>
_____________________________________________________________________
总结:
1.利用get_variable声明变量时,不受name_scope的影响
2.name_scope只影响用tf.Variable形式声明的变量名
3.不在同一个variable_scope的get_variable是互不影响的
4.在name_scope里面不能用get_variable来重复利用变量,想重复利用变量只能在variable_scope里面用get_variable形式声明变量
"""