forked from zephyrproject-rtos/zephyr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtimeout.c
309 lines (247 loc) · 6.42 KB
/
timeout.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
/*
* Copyright (c) 2018 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <kernel.h>
#include <spinlock.h>
#include <ksched.h>
#include <timeout_q.h>
#include <syscall_handler.h>
#include <drivers/timer/system_timer.h>
#include <sys_clock.h>
#define LOCKED(lck) for (k_spinlock_key_t __i = {}, \
__key = k_spin_lock(lck); \
__i.key == 0; \
k_spin_unlock(lck, __key), __i.key = 1)
static u64_t curr_tick;
static sys_dlist_t timeout_list = SYS_DLIST_STATIC_INIT(&timeout_list);
static struct k_spinlock timeout_lock;
#define MAX_WAIT (IS_ENABLED(CONFIG_SYSTEM_CLOCK_SLOPPY_IDLE) \
? K_TICKS_FOREVER : INT_MAX)
/* Cycles left to process in the currently-executing z_clock_announce() */
static int announce_remaining;
#if defined(CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME)
int z_clock_hw_cycles_per_sec = CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC;
#ifdef CONFIG_USERSPACE
static inline int z_vrfy_z_clock_hw_cycles_per_sec_runtime_get(void)
{
return z_impl_z_clock_hw_cycles_per_sec_runtime_get();
}
#include <syscalls/z_clock_hw_cycles_per_sec_runtime_get_mrsh.c>
#endif /* CONFIG_USERSPACE */
#endif /* CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME */
static struct _timeout *first(void)
{
sys_dnode_t *t = sys_dlist_peek_head(&timeout_list);
return t == NULL ? NULL : CONTAINER_OF(t, struct _timeout, node);
}
static struct _timeout *next(struct _timeout *t)
{
sys_dnode_t *n = sys_dlist_peek_next(&timeout_list, &t->node);
return n == NULL ? NULL : CONTAINER_OF(n, struct _timeout, node);
}
static void remove_timeout(struct _timeout *t)
{
if (next(t) != NULL) {
next(t)->dticks += t->dticks;
}
sys_dlist_remove(&t->node);
}
static s32_t elapsed(void)
{
return announce_remaining == 0 ? z_clock_elapsed() : 0;
}
static s32_t next_timeout(void)
{
struct _timeout *to = first();
s32_t ticks_elapsed = elapsed();
s32_t ret = to == NULL ? MAX_WAIT : MAX(0, to->dticks - ticks_elapsed);
#ifdef CONFIG_TIMESLICING
if (_current_cpu->slice_ticks && _current_cpu->slice_ticks < ret) {
ret = _current_cpu->slice_ticks;
}
#endif
return ret;
}
void z_add_timeout(struct _timeout *to, _timeout_func_t fn,
k_timeout_t timeout)
{
#ifdef CONFIG_LEGACY_TIMEOUT_API
k_ticks_t ticks = timeout;
#else
k_ticks_t ticks = timeout.ticks + 1;
if (IS_ENABLED(CONFIG_TIMEOUT_64BIT) && Z_TICK_ABS(ticks) >= 0) {
ticks = Z_TICK_ABS(ticks) - (curr_tick + elapsed());
}
#endif
__ASSERT(!sys_dnode_is_linked(&to->node), "");
to->fn = fn;
ticks = MAX(1, ticks);
LOCKED(&timeout_lock) {
struct _timeout *t;
to->dticks = ticks + elapsed();
for (t = first(); t != NULL; t = next(t)) {
__ASSERT(t->dticks >= 0, "");
if (t->dticks > to->dticks) {
t->dticks -= to->dticks;
sys_dlist_insert(&t->node, &to->node);
break;
}
to->dticks -= t->dticks;
}
if (t == NULL) {
sys_dlist_append(&timeout_list, &to->node);
}
if (to == first()) {
z_clock_set_timeout(next_timeout(), false);
}
}
}
int z_abort_timeout(struct _timeout *to)
{
int ret = -EINVAL;
LOCKED(&timeout_lock) {
if (sys_dnode_is_linked(&to->node)) {
remove_timeout(to);
ret = 0;
}
}
return ret;
}
/* must be locked */
static k_ticks_t timeout_rem(struct _timeout *timeout)
{
k_ticks_t ticks = 0;
if (z_is_inactive_timeout(timeout)) {
return 0;
}
for (struct _timeout *t = first(); t != NULL; t = next(t)) {
ticks += t->dticks;
if (timeout == t) {
break;
}
}
return ticks - elapsed();
}
k_ticks_t z_timeout_remaining(struct _timeout *timeout)
{
k_ticks_t ticks = 0;
LOCKED(&timeout_lock) {
ticks = timeout_rem(timeout);
}
return ticks;
}
k_ticks_t z_timeout_expires(struct _timeout *timeout)
{
k_ticks_t ticks = 0;
LOCKED(&timeout_lock) {
ticks = curr_tick + timeout_rem(timeout);
}
return ticks;
}
s32_t z_get_next_timeout_expiry(void)
{
s32_t ret = (s32_t) K_TICKS_FOREVER;
LOCKED(&timeout_lock) {
ret = next_timeout();
}
return ret;
}
void z_set_timeout_expiry(s32_t ticks, bool idle)
{
LOCKED(&timeout_lock) {
int next = next_timeout();
bool sooner = (next == K_TICKS_FOREVER) || (ticks < next);
bool imminent = next <= 1;
/* Only set new timeouts when they are sooner than
* what we have. Also don't try to set a timeout when
* one is about to expire: drivers have internal logic
* that will bump the timeout to the "next" tick if
* it's not considered to be settable as directed.
* SMP can't use this optimization though: we don't
* know when context switches happen until interrupt
* exit and so can't get the timeslicing clamp folded
* in.
*/
if (!imminent && (sooner || IS_ENABLED(CONFIG_SMP))) {
z_clock_set_timeout(ticks, idle);
}
}
}
void z_clock_announce(s32_t ticks)
{
#ifdef CONFIG_TIMESLICING
z_time_slice(ticks);
#endif
k_spinlock_key_t key = k_spin_lock(&timeout_lock);
announce_remaining = ticks;
while (first() != NULL && first()->dticks <= announce_remaining) {
struct _timeout *t = first();
int dt = t->dticks;
curr_tick += dt;
announce_remaining -= dt;
t->dticks = 0;
remove_timeout(t);
k_spin_unlock(&timeout_lock, key);
t->fn(t);
key = k_spin_lock(&timeout_lock);
}
if (first() != NULL) {
first()->dticks -= announce_remaining;
}
curr_tick += announce_remaining;
announce_remaining = 0;
z_clock_set_timeout(next_timeout(), false);
k_spin_unlock(&timeout_lock, key);
}
s64_t z_tick_get(void)
{
u64_t t = 0U;
LOCKED(&timeout_lock) {
t = curr_tick + z_clock_elapsed();
}
return t;
}
u32_t z_tick_get_32(void)
{
#ifdef CONFIG_TICKLESS_KERNEL
return (u32_t)z_tick_get();
#else
return (u32_t)curr_tick;
#endif
}
s64_t z_impl_k_uptime_ticks(void)
{
return z_tick_get();
}
#ifdef CONFIG_USERSPACE
static inline s64_t z_vrfy_k_uptime_ticks(void)
{
return z_impl_k_uptime_ticks();
}
#include <syscalls/k_uptime_ticks_mrsh.c>
#endif
/* Returns the uptime expiration (relative to an unlocked "now"!) of a
* timeout object. When used correctly, this should be called once,
* synchronously with the user passing a new timeout value. It should
* not be used iteratively to adjust a timeout.
*/
u64_t z_timeout_end_calc(k_timeout_t timeout)
{
k_ticks_t dt;
if (K_TIMEOUT_EQ(timeout, K_FOREVER)) {
return UINT64_MAX;
} else if (K_TIMEOUT_EQ(timeout, K_NO_WAIT)) {
return z_tick_get();
}
#ifdef CONFIG_LEGACY_TIMEOUT_API
dt = k_ms_to_ticks_ceil32(timeout);
#else
dt = timeout.ticks;
if (IS_ENABLED(CONFIG_TIMEOUT_64BIT) && Z_TICK_ABS(dt) >= 0) {
return Z_TICK_ABS(dt);
}
#endif
return z_tick_get() + MAX(1, dt);
}