forked from redis/redis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhyperloglog.c
1556 lines (1429 loc) · 56.3 KB
/
hyperloglog.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* hyperloglog.c - Redis HyperLogLog probabilistic cardinality approximation.
* This file implements the algorithm and the exported Redis commands.
*
* Copyright (c) 2014, Salvatore Sanfilippo <antirez at gmail dot com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Redis nor the names of its contributors may be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "server.h"
#include <stdint.h>
#include <math.h>
/* The Redis HyperLogLog implementation is based on the following ideas:
*
* * The use of a 64 bit hash function as proposed in [1], in order to don't
* limited to cardinalities up to 10^9, at the cost of just 1 additional
* bit per register.
* * The use of 16384 6-bit registers for a great level of accuracy, using
* a total of 12k per key.
* * The use of the Redis string data type. No new type is introduced.
* * No attempt is made to compress the data structure as in [1]. Also the
* algorithm used is the original HyperLogLog Algorithm as in [2], with
* the only difference that a 64 bit hash function is used, so no correction
* is performed for values near 2^32 as in [1].
*
* [1] Heule, Nunkesser, Hall: HyperLogLog in Practice: Algorithmic
* Engineering of a State of The Art Cardinality Estimation Algorithm.
*
* [2] P. Flajolet, Éric Fusy, O. Gandouet, and F. Meunier. Hyperloglog: The
* analysis of a near-optimal cardinality estimation algorithm.
*
* Redis uses two representations:
*
* 1) A "dense" representation where every entry is represented by
* a 6-bit integer.
* 2) A "sparse" representation using run length compression suitable
* for representing HyperLogLogs with many registers set to 0 in
* a memory efficient way.
*
*
* HLL header
* ===
*
* Both the dense and sparse representation have a 16 byte header as follows:
*
* +------+---+-----+----------+
* | HYLL | E | N/U | Cardin. |
* +------+---+-----+----------+
*
* The first 4 bytes are a magic string set to the bytes "HYLL".
* "E" is one byte encoding, currently set to HLL_DENSE or
* HLL_SPARSE. N/U are three not used bytes.
*
* The "Cardin." field is a 64 bit integer stored in little endian format
* with the latest cardinality computed that can be reused if the data
* structure was not modified since the last computation (this is useful
* because there are high probabilities that HLLADD operations don't
* modify the actual data structure and hence the approximated cardinality).
*
* When the most significant bit in the most significant byte of the cached
* cardinality is set, it means that the data structure was modified and
* we can't reuse the cached value that must be recomputed.
*
* Dense representation
* ===
*
* The dense representation used by Redis is the following:
*
* +--------+--------+--------+------// //--+
* |11000000|22221111|33333322|55444444 .... |
* +--------+--------+--------+------// //--+
*
* The 6 bits counters are encoded one after the other starting from the
* LSB to the MSB, and using the next bytes as needed.
*
* Sparse representation
* ===
*
* The sparse representation encodes registers using a run length
* encoding composed of three opcodes, two using one byte, and one using
* of two bytes. The opcodes are called ZERO, XZERO and VAL.
*
* ZERO opcode is represented as 00xxxxxx. The 6-bit integer represented
* by the six bits 'xxxxxx', plus 1, means that there are N registers set
* to 0. This opcode can represent from 1 to 64 contiguous registers set
* to the value of 0.
*
* XZERO opcode is represented by two bytes 01xxxxxx yyyyyyyy. The 14-bit
* integer represented by the bits 'xxxxxx' as most significant bits and
* 'yyyyyyyy' as least significant bits, plus 1, means that there are N
* registers set to 0. This opcode can represent from 0 to 16384 contiguous
* registers set to the value of 0.
*
* VAL opcode is represented as 1vvvvvxx. It contains a 5-bit integer
* representing the value of a register, and a 2-bit integer representing
* the number of contiguous registers set to that value 'vvvvv'.
* To obtain the value and run length, the integers vvvvv and xx must be
* incremented by one. This opcode can represent values from 1 to 32,
* repeated from 1 to 4 times.
*
* The sparse representation can't represent registers with a value greater
* than 32, however it is very unlikely that we find such a register in an
* HLL with a cardinality where the sparse representation is still more
* memory efficient than the dense representation. When this happens the
* HLL is converted to the dense representation.
*
* The sparse representation is purely positional. For example a sparse
* representation of an empty HLL is just: XZERO:16384.
*
* An HLL having only 3 non-zero registers at position 1000, 1020, 1021
* respectively set to 2, 3, 3, is represented by the following three
* opcodes:
*
* XZERO:1000 (Registers 0-999 are set to 0)
* VAL:2,1 (1 register set to value 2, that is register 1000)
* ZERO:19 (Registers 1001-1019 set to 0)
* VAL:3,2 (2 registers set to value 3, that is registers 1020,1021)
* XZERO:15362 (Registers 1022-16383 set to 0)
*
* In the example the sparse representation used just 7 bytes instead
* of 12k in order to represent the HLL registers. In general for low
* cardinality there is a big win in terms of space efficiency, traded
* with CPU time since the sparse representation is slower to access:
*
* The following table shows average cardinality vs bytes used, 100
* samples per cardinality (when the set was not representable because
* of registers with too big value, the dense representation size was used
* as a sample).
*
* 100 267
* 200 485
* 300 678
* 400 859
* 500 1033
* 600 1205
* 700 1375
* 800 1544
* 900 1713
* 1000 1882
* 2000 3480
* 3000 4879
* 4000 6089
* 5000 7138
* 6000 8042
* 7000 8823
* 8000 9500
* 9000 10088
* 10000 10591
*
* The dense representation uses 12288 bytes, so there is a big win up to
* a cardinality of ~2000-3000. For bigger cardinalities the constant times
* involved in updating the sparse representation is not justified by the
* memory savings. The exact maximum length of the sparse representation
* when this implementation switches to the dense representation is
* configured via the define server.hll_sparse_max_bytes.
*/
struct hllhdr {
char magic[4]; /* "HYLL" */
uint8_t encoding; /* HLL_DENSE or HLL_SPARSE. */
uint8_t notused[3]; /* Reserved for future use, must be zero. */
uint8_t card[8]; /* Cached cardinality, little endian. */
uint8_t registers[]; /* Data bytes. */
};
/* The cached cardinality MSB is used to signal validity of the cached value. */
#define HLL_INVALIDATE_CACHE(hdr) (hdr)->card[7] |= (1<<7)
#define HLL_VALID_CACHE(hdr) (((hdr)->card[7] & (1<<7)) == 0)
#define HLL_P 14 /* The greater is P, the smaller the error. */
#define HLL_REGISTERS (1<<HLL_P) /* With P=14, 16384 registers. */
#define HLL_P_MASK (HLL_REGISTERS-1) /* Mask to index register. */
#define HLL_BITS 6 /* Enough to count up to 63 leading zeroes. */
#define HLL_REGISTER_MAX ((1<<HLL_BITS)-1)
#define HLL_HDR_SIZE sizeof(struct hllhdr)
#define HLL_DENSE_SIZE (HLL_HDR_SIZE+((HLL_REGISTERS*HLL_BITS+7)/8))
#define HLL_DENSE 0 /* Dense encoding. */
#define HLL_SPARSE 1 /* Sparse encoding. */
#define HLL_RAW 255 /* Only used internally, never exposed. */
#define HLL_MAX_ENCODING 1
static char *invalid_hll_err = "-INVALIDOBJ Corrupted HLL object detected\r\n";
/* =========================== Low level bit macros ========================= */
/* Macros to access the dense representation.
*
* We need to get and set 6 bit counters in an array of 8 bit bytes.
* We use macros to make sure the code is inlined since speed is critical
* especially in order to compute the approximated cardinality in
* HLLCOUNT where we need to access all the registers at once.
* For the same reason we also want to avoid conditionals in this code path.
*
* +--------+--------+--------+------//
* |11000000|22221111|33333322|55444444
* +--------+--------+--------+------//
*
* Note: in the above representation the most significant bit (MSB)
* of every byte is on the left. We start using bits from the LSB to MSB,
* and so forth passing to the next byte.
*
* Example, we want to access to counter at pos = 1 ("111111" in the
* illustration above).
*
* The index of the first byte b0 containing our data is:
*
* b0 = 6 * pos / 8 = 0
*
* +--------+
* |11000000| <- Our byte at b0
* +--------+
*
* The position of the first bit (counting from the LSB = 0) in the byte
* is given by:
*
* fb = 6 * pos % 8 -> 6
*
* Right shift b0 of 'fb' bits.
*
* +--------+
* |11000000| <- Initial value of b0
* |00000011| <- After right shift of 6 pos.
* +--------+
*
* Left shift b1 of bits 8-fb bits (2 bits)
*
* +--------+
* |22221111| <- Initial value of b1
* |22111100| <- After left shift of 2 bits.
* +--------+
*
* OR the two bits, and finally AND with 111111 (63 in decimal) to
* clean the higher order bits we are not interested in:
*
* +--------+
* |00000011| <- b0 right shifted
* |22111100| <- b1 left shifted
* |22111111| <- b0 OR b1
* | 111111| <- (b0 OR b1) AND 63, our value.
* +--------+
*
* We can try with a different example, like pos = 0. In this case
* the 6-bit counter is actually contained in a single byte.
*
* b0 = 6 * pos / 8 = 0
*
* +--------+
* |11000000| <- Our byte at b0
* +--------+
*
* fb = 6 * pos % 8 = 0
*
* So we right shift of 0 bits (no shift in practice) and
* left shift the next byte of 8 bits, even if we don't use it,
* but this has the effect of clearing the bits so the result
* will not be affacted after the OR.
*
* -------------------------------------------------------------------------
*
* Setting the register is a bit more complex, let's assume that 'val'
* is the value we want to set, already in the right range.
*
* We need two steps, in one we need to clear the bits, and in the other
* we need to bitwise-OR the new bits.
*
* Let's try with 'pos' = 1, so our first byte at 'b' is 0,
*
* "fb" is 6 in this case.
*
* +--------+
* |11000000| <- Our byte at b0
* +--------+
*
* To create a AND-mask to clear the bits about this position, we just
* initialize the mask with the value 63, left shift it of "fs" bits,
* and finally invert the result.
*
* +--------+
* |00111111| <- "mask" starts at 63
* |11000000| <- "mask" after left shift of "ls" bits.
* |00111111| <- "mask" after invert.
* +--------+
*
* Now we can bitwise-AND the byte at "b" with the mask, and bitwise-OR
* it with "val" left-shifted of "ls" bits to set the new bits.
*
* Now let's focus on the next byte b1:
*
* +--------+
* |22221111| <- Initial value of b1
* +--------+
*
* To build the AND mask we start again with the 63 value, right shift
* it by 8-fb bits, and invert it.
*
* +--------+
* |00111111| <- "mask" set at 2&6-1
* |00001111| <- "mask" after the right shift by 8-fb = 2 bits
* |11110000| <- "mask" after bitwise not.
* +--------+
*
* Now we can mask it with b+1 to clear the old bits, and bitwise-OR
* with "val" left-shifted by "rs" bits to set the new value.
*/
/* Note: if we access the last counter, we will also access the b+1 byte
* that is out of the array, but sds strings always have an implicit null
* term, so the byte exists, and we can skip the conditional (or the need
* to allocate 1 byte more explicitly). */
/* Store the value of the register at position 'regnum' into variable 'target'.
* 'p' is an array of unsigned bytes. */
#define HLL_DENSE_GET_REGISTER(target,p,regnum) do { \
uint8_t *_p = (uint8_t*) p; \
unsigned long _byte = regnum*HLL_BITS/8; \
unsigned long _fb = regnum*HLL_BITS&7; \
unsigned long _fb8 = 8 - _fb; \
unsigned long b0 = _p[_byte]; \
unsigned long b1 = _p[_byte+1]; \
target = ((b0 >> _fb) | (b1 << _fb8)) & HLL_REGISTER_MAX; \
} while(0)
/* Set the value of the register at position 'regnum' to 'val'.
* 'p' is an array of unsigned bytes. */
#define HLL_DENSE_SET_REGISTER(p,regnum,val) do { \
uint8_t *_p = (uint8_t*) p; \
unsigned long _byte = regnum*HLL_BITS/8; \
unsigned long _fb = regnum*HLL_BITS&7; \
unsigned long _fb8 = 8 - _fb; \
unsigned long _v = val; \
_p[_byte] &= ~(HLL_REGISTER_MAX << _fb); \
_p[_byte] |= _v << _fb; \
_p[_byte+1] &= ~(HLL_REGISTER_MAX >> _fb8); \
_p[_byte+1] |= _v >> _fb8; \
} while(0)
/* Macros to access the sparse representation.
* The macros parameter is expected to be an uint8_t pointer. */
#define HLL_SPARSE_XZERO_BIT 0x40 /* 01xxxxxx */
#define HLL_SPARSE_VAL_BIT 0x80 /* 1vvvvvxx */
#define HLL_SPARSE_IS_ZERO(p) (((*(p)) & 0xc0) == 0) /* 00xxxxxx */
#define HLL_SPARSE_IS_XZERO(p) (((*(p)) & 0xc0) == HLL_SPARSE_XZERO_BIT)
#define HLL_SPARSE_IS_VAL(p) ((*(p)) & HLL_SPARSE_VAL_BIT)
#define HLL_SPARSE_ZERO_LEN(p) (((*(p)) & 0x3f)+1)
#define HLL_SPARSE_XZERO_LEN(p) (((((*(p)) & 0x3f) << 8) | (*((p)+1)))+1)
#define HLL_SPARSE_VAL_VALUE(p) ((((*(p)) >> 2) & 0x1f)+1)
#define HLL_SPARSE_VAL_LEN(p) (((*(p)) & 0x3)+1)
#define HLL_SPARSE_VAL_MAX_VALUE 32
#define HLL_SPARSE_VAL_MAX_LEN 4
#define HLL_SPARSE_ZERO_MAX_LEN 64
#define HLL_SPARSE_XZERO_MAX_LEN 16384
#define HLL_SPARSE_VAL_SET(p,val,len) do { \
*(p) = (((val)-1)<<2|((len)-1))|HLL_SPARSE_VAL_BIT; \
} while(0)
#define HLL_SPARSE_ZERO_SET(p,len) do { \
*(p) = (len)-1; \
} while(0)
#define HLL_SPARSE_XZERO_SET(p,len) do { \
int _l = (len)-1; \
*(p) = (_l>>8) | HLL_SPARSE_XZERO_BIT; \
*((p)+1) = (_l&0xff); \
} while(0)
/* ========================= HyperLogLog algorithm ========================= */
/* Our hash function is MurmurHash2, 64 bit version.
* It was modified for Redis in order to provide the same result in
* big and little endian archs (endian neutral). */
uint64_t MurmurHash64A (const void * key, int len, unsigned int seed) {
const uint64_t m = 0xc6a4a7935bd1e995;
const int r = 47;
uint64_t h = seed ^ (len * m);
const uint8_t *data = (const uint8_t *)key;
const uint8_t *end = data + (len-(len&7));
while(data != end) {
uint64_t k;
#if (BYTE_ORDER == LITTLE_ENDIAN)
k = *((uint64_t*)data);
#else
k = (uint64_t) data[0];
k |= (uint64_t) data[1] << 8;
k |= (uint64_t) data[2] << 16;
k |= (uint64_t) data[3] << 24;
k |= (uint64_t) data[4] << 32;
k |= (uint64_t) data[5] << 40;
k |= (uint64_t) data[6] << 48;
k |= (uint64_t) data[7] << 56;
#endif
k *= m;
k ^= k >> r;
k *= m;
h ^= k;
h *= m;
data += 8;
}
switch(len & 7) {
case 7: h ^= (uint64_t)data[6] << 48;
case 6: h ^= (uint64_t)data[5] << 40;
case 5: h ^= (uint64_t)data[4] << 32;
case 4: h ^= (uint64_t)data[3] << 24;
case 3: h ^= (uint64_t)data[2] << 16;
case 2: h ^= (uint64_t)data[1] << 8;
case 1: h ^= (uint64_t)data[0];
h *= m;
};
h ^= h >> r;
h *= m;
h ^= h >> r;
return h;
}
/* Given a string element to add to the HyperLogLog, returns the length
* of the pattern 000..1 of the element hash. As a side effect 'regp' is
* set to the register index this element hashes to. */
int hllPatLen(unsigned char *ele, size_t elesize, long *regp) {
uint64_t hash, bit, index;
int count;
/* Count the number of zeroes starting from bit HLL_REGISTERS
* (that is a power of two corresponding to the first bit we don't use
* as index). The max run can be 64-P+1 bits.
*
* Note that the final "1" ending the sequence of zeroes must be
* included in the count, so if we find "001" the count is 3, and
* the smallest count possible is no zeroes at all, just a 1 bit
* at the first position, that is a count of 1.
*
* This may sound like inefficient, but actually in the average case
* there are high probabilities to find a 1 after a few iterations. */
hash = MurmurHash64A(ele,elesize,0xadc83b19ULL);
index = hash & HLL_P_MASK; /* Register index. */
hash |= ((uint64_t)1<<63); /* Make sure the loop terminates. */
bit = HLL_REGISTERS; /* First bit not used to address the register. */
count = 1; /* Initialized to 1 since we count the "00000...1" pattern. */
while((hash & bit) == 0) {
count++;
bit <<= 1;
}
*regp = (int) index;
return count;
}
/* ================== Dense representation implementation ================== */
/* "Add" the element in the dense hyperloglog data structure.
* Actually nothing is added, but the max 0 pattern counter of the subset
* the element belongs to is incremented if needed.
*
* 'registers' is expected to have room for HLL_REGISTERS plus an
* additional byte on the right. This requirement is met by sds strings
* automatically since they are implicitly null terminated.
*
* The function always succeed, however if as a result of the operation
* the approximated cardinality changed, 1 is returned. Otherwise 0
* is returned. */
int hllDenseAdd(uint8_t *registers, unsigned char *ele, size_t elesize) {
uint8_t oldcount, count;
long index;
/* Update the register if this element produced a longer run of zeroes. */
count = hllPatLen(ele,elesize,&index);
HLL_DENSE_GET_REGISTER(oldcount,registers,index);
if (count > oldcount) {
HLL_DENSE_SET_REGISTER(registers,index,count);
return 1;
} else {
return 0;
}
}
/* Compute SUM(2^-reg) in the dense representation.
* PE is an array with a pre-computer table of values 2^-reg indexed by reg.
* As a side effect the integer pointed by 'ezp' is set to the number
* of zero registers. */
double hllDenseSum(uint8_t *registers, double *PE, int *ezp) {
double E = 0;
int j, ez = 0;
/* Redis default is to use 16384 registers 6 bits each. The code works
* with other values by modifying the defines, but for our target value
* we take a faster path with unrolled loops. */
if (HLL_REGISTERS == 16384 && HLL_BITS == 6) {
uint8_t *r = registers;
unsigned long r0, r1, r2, r3, r4, r5, r6, r7, r8, r9,
r10, r11, r12, r13, r14, r15;
for (j = 0; j < 1024; j++) {
/* Handle 16 registers per iteration. */
r0 = r[0] & 63; if (r0 == 0) ez++;
r1 = (r[0] >> 6 | r[1] << 2) & 63; if (r1 == 0) ez++;
r2 = (r[1] >> 4 | r[2] << 4) & 63; if (r2 == 0) ez++;
r3 = (r[2] >> 2) & 63; if (r3 == 0) ez++;
r4 = r[3] & 63; if (r4 == 0) ez++;
r5 = (r[3] >> 6 | r[4] << 2) & 63; if (r5 == 0) ez++;
r6 = (r[4] >> 4 | r[5] << 4) & 63; if (r6 == 0) ez++;
r7 = (r[5] >> 2) & 63; if (r7 == 0) ez++;
r8 = r[6] & 63; if (r8 == 0) ez++;
r9 = (r[6] >> 6 | r[7] << 2) & 63; if (r9 == 0) ez++;
r10 = (r[7] >> 4 | r[8] << 4) & 63; if (r10 == 0) ez++;
r11 = (r[8] >> 2) & 63; if (r11 == 0) ez++;
r12 = r[9] & 63; if (r12 == 0) ez++;
r13 = (r[9] >> 6 | r[10] << 2) & 63; if (r13 == 0) ez++;
r14 = (r[10] >> 4 | r[11] << 4) & 63; if (r14 == 0) ez++;
r15 = (r[11] >> 2) & 63; if (r15 == 0) ez++;
/* Additional parens will allow the compiler to optimize the
* code more with a loss of precision that is not very relevant
* here (floating point math is not commutative!). */
E += (PE[r0] + PE[r1]) + (PE[r2] + PE[r3]) + (PE[r4] + PE[r5]) +
(PE[r6] + PE[r7]) + (PE[r8] + PE[r9]) + (PE[r10] + PE[r11]) +
(PE[r12] + PE[r13]) + (PE[r14] + PE[r15]);
r += 12;
}
} else {
for (j = 0; j < HLL_REGISTERS; j++) {
unsigned long reg;
HLL_DENSE_GET_REGISTER(reg,registers,j);
if (reg == 0) {
ez++;
/* Increment E at the end of the loop. */
} else {
E += PE[reg]; /* Precomputed 2^(-reg[j]). */
}
}
E += ez; /* Add 2^0 'ez' times. */
}
*ezp = ez;
return E;
}
/* ================== Sparse representation implementation ================= */
/* Convert the HLL with sparse representation given as input in its dense
* representation. Both representations are represented by SDS strings, and
* the input representation is freed as a side effect.
*
* The function returns C_OK if the sparse representation was valid,
* otherwise C_ERR is returned if the representation was corrupted. */
int hllSparseToDense(robj *o) {
sds sparse = o->ptr, dense;
struct hllhdr *hdr, *oldhdr = (struct hllhdr*)sparse;
int idx = 0, runlen, regval;
uint8_t *p = (uint8_t*)sparse, *end = p+sdslen(sparse);
/* If the representation is already the right one return ASAP. */
hdr = (struct hllhdr*) sparse;
if (hdr->encoding == HLL_DENSE) return C_OK;
/* Create a string of the right size filled with zero bytes.
* Note that the cached cardinality is set to 0 as a side effect
* that is exactly the cardinality of an empty HLL. */
dense = sdsnewlen(NULL,HLL_DENSE_SIZE);
hdr = (struct hllhdr*) dense;
*hdr = *oldhdr; /* This will copy the magic and cached cardinality. */
hdr->encoding = HLL_DENSE;
/* Now read the sparse representation and set non-zero registers
* accordingly. */
p += HLL_HDR_SIZE;
while(p < end) {
if (HLL_SPARSE_IS_ZERO(p)) {
runlen = HLL_SPARSE_ZERO_LEN(p);
idx += runlen;
p++;
} else if (HLL_SPARSE_IS_XZERO(p)) {
runlen = HLL_SPARSE_XZERO_LEN(p);
idx += runlen;
p += 2;
} else {
runlen = HLL_SPARSE_VAL_LEN(p);
regval = HLL_SPARSE_VAL_VALUE(p);
while(runlen--) {
HLL_DENSE_SET_REGISTER(hdr->registers,idx,regval);
idx++;
}
p++;
}
}
/* If the sparse representation was valid, we expect to find idx
* set to HLL_REGISTERS. */
if (idx != HLL_REGISTERS) {
sdsfree(dense);
return C_ERR;
}
/* Free the old representation and set the new one. */
sdsfree(o->ptr);
o->ptr = dense;
return C_OK;
}
/* "Add" the element in the sparse hyperloglog data structure.
* Actually nothing is added, but the max 0 pattern counter of the subset
* the element belongs to is incremented if needed.
*
* The object 'o' is the String object holding the HLL. The function requires
* a reference to the object in order to be able to enlarge the string if
* needed.
*
* On success, the function returns 1 if the cardinality changed, or 0
* if the register for this element was not updated.
* On error (if the representation is invalid) -1 is returned.
*
* As a side effect the function may promote the HLL representation from
* sparse to dense: this happens when a register requires to be set to a value
* not representable with the sparse representation, or when the resulting
* size would be greater than server.hll_sparse_max_bytes. */
int hllSparseAdd(robj *o, unsigned char *ele, size_t elesize) {
struct hllhdr *hdr;
uint8_t oldcount, count, *sparse, *end, *p, *prev, *next;
long index, first, span;
long is_zero = 0, is_xzero = 0, is_val = 0, runlen = 0;
/* Update the register if this element produced a longer run of zeroes. */
count = hllPatLen(ele,elesize,&index);
/* If the count is too big to be representable by the sparse representation
* switch to dense representation. */
if (count > HLL_SPARSE_VAL_MAX_VALUE) goto promote;
/* When updating a sparse representation, sometimes we may need to
* enlarge the buffer for up to 3 bytes in the worst case (XZERO split
* into XZERO-VAL-XZERO). Make sure there is enough space right now
* so that the pointers we take during the execution of the function
* will be valid all the time. */
o->ptr = sdsMakeRoomFor(o->ptr,3);
/* Step 1: we need to locate the opcode we need to modify to check
* if a value update is actually needed. */
sparse = p = ((uint8_t*)o->ptr) + HLL_HDR_SIZE;
end = p + sdslen(o->ptr) - HLL_HDR_SIZE;
first = 0;
prev = NULL; /* Points to previos opcode at the end of the loop. */
next = NULL; /* Points to the next opcode at the end of the loop. */
span = 0;
while(p < end) {
long oplen;
/* Set span to the number of registers covered by this opcode.
*
* This is the most performance critical loop of the sparse
* representation. Sorting the conditionals from the most to the
* least frequent opcode in many-bytes sparse HLLs is faster. */
oplen = 1;
if (HLL_SPARSE_IS_ZERO(p)) {
span = HLL_SPARSE_ZERO_LEN(p);
} else if (HLL_SPARSE_IS_VAL(p)) {
span = HLL_SPARSE_VAL_LEN(p);
} else { /* XZERO. */
span = HLL_SPARSE_XZERO_LEN(p);
oplen = 2;
}
/* Break if this opcode covers the register as 'index'. */
if (index <= first+span-1) break;
prev = p;
p += oplen;
first += span;
}
if (span == 0) return -1; /* Invalid format. */
next = HLL_SPARSE_IS_XZERO(p) ? p+2 : p+1;
if (next >= end) next = NULL;
/* Cache current opcode type to avoid using the macro again and
* again for something that will not change.
* Also cache the run-length of the opcode. */
if (HLL_SPARSE_IS_ZERO(p)) {
is_zero = 1;
runlen = HLL_SPARSE_ZERO_LEN(p);
} else if (HLL_SPARSE_IS_XZERO(p)) {
is_xzero = 1;
runlen = HLL_SPARSE_XZERO_LEN(p);
} else {
is_val = 1;
runlen = HLL_SPARSE_VAL_LEN(p);
}
/* Step 2: After the loop:
*
* 'first' stores to the index of the first register covered
* by the current opcode, which is pointed by 'p'.
*
* 'next' ad 'prev' store respectively the next and previous opcode,
* or NULL if the opcode at 'p' is respectively the last or first.
*
* 'span' is set to the number of registers covered by the current
* opcode.
*
* There are different cases in order to update the data structure
* in place without generating it from scratch:
*
* A) If it is a VAL opcode already set to a value >= our 'count'
* no update is needed, regardless of the VAL run-length field.
* In this case PFADD returns 0 since no changes are performed.
*
* B) If it is a VAL opcode with len = 1 (representing only our
* register) and the value is less than 'count', we just update it
* since this is a trivial case. */
if (is_val) {
oldcount = HLL_SPARSE_VAL_VALUE(p);
/* Case A. */
if (oldcount >= count) return 0;
/* Case B. */
if (runlen == 1) {
HLL_SPARSE_VAL_SET(p,count,1);
goto updated;
}
}
/* C) Another trivial to handle case is a ZERO opcode with a len of 1.
* We can just replace it with a VAL opcode with our value and len of 1. */
if (is_zero && runlen == 1) {
HLL_SPARSE_VAL_SET(p,count,1);
goto updated;
}
/* D) General case.
*
* The other cases are more complex: our register requires to be updated
* and is either currently represented by a VAL opcode with len > 1,
* by a ZERO opcode with len > 1, or by an XZERO opcode.
*
* In those cases the original opcode must be split into muliple
* opcodes. The worst case is an XZERO split in the middle resuling into
* XZERO - VAL - XZERO, so the resulting sequence max length is
* 5 bytes.
*
* We perform the split writing the new sequence into the 'new' buffer
* with 'newlen' as length. Later the new sequence is inserted in place
* of the old one, possibly moving what is on the right a few bytes
* if the new sequence is longer than the older one. */
uint8_t seq[5], *n = seq;
int last = first+span-1; /* Last register covered by the sequence. */
int len;
if (is_zero || is_xzero) {
/* Handle splitting of ZERO / XZERO. */
if (index != first) {
len = index-first;
if (len > HLL_SPARSE_ZERO_MAX_LEN) {
HLL_SPARSE_XZERO_SET(n,len);
n += 2;
} else {
HLL_SPARSE_ZERO_SET(n,len);
n++;
}
}
HLL_SPARSE_VAL_SET(n,count,1);
n++;
if (index != last) {
len = last-index;
if (len > HLL_SPARSE_ZERO_MAX_LEN) {
HLL_SPARSE_XZERO_SET(n,len);
n += 2;
} else {
HLL_SPARSE_ZERO_SET(n,len);
n++;
}
}
} else {
/* Handle splitting of VAL. */
int curval = HLL_SPARSE_VAL_VALUE(p);
if (index != first) {
len = index-first;
HLL_SPARSE_VAL_SET(n,curval,len);
n++;
}
HLL_SPARSE_VAL_SET(n,count,1);
n++;
if (index != last) {
len = last-index;
HLL_SPARSE_VAL_SET(n,curval,len);
n++;
}
}
/* Step 3: substitute the new sequence with the old one.
*
* Note that we already allocated space on the sds string
* calling sdsMakeRoomFor(). */
int seqlen = n-seq;
int oldlen = is_xzero ? 2 : 1;
int deltalen = seqlen-oldlen;
if (deltalen > 0 &&
sdslen(o->ptr)+deltalen > server.hll_sparse_max_bytes) goto promote;
if (deltalen && next) memmove(next+deltalen,next,end-next);
sdsIncrLen(o->ptr,deltalen);
memcpy(p,seq,seqlen);
end += deltalen;
updated:
/* Step 4: Merge adjacent values if possible.
*
* The representation was updated, however the resulting representation
* may not be optimal: adjacent VAL opcodes can sometimes be merged into
* a single one. */
p = prev ? prev : sparse;
int scanlen = 5; /* Scan up to 5 upcodes starting from prev. */
while (p < end && scanlen--) {
if (HLL_SPARSE_IS_XZERO(p)) {
p += 2;
continue;
} else if (HLL_SPARSE_IS_ZERO(p)) {
p++;
continue;
}
/* We need two adjacent VAL opcodes to try a merge, having
* the same value, and a len that fits the VAL opcode max len. */
if (p+1 < end && HLL_SPARSE_IS_VAL(p+1)) {
int v1 = HLL_SPARSE_VAL_VALUE(p);
int v2 = HLL_SPARSE_VAL_VALUE(p+1);
if (v1 == v2) {
int len = HLL_SPARSE_VAL_LEN(p)+HLL_SPARSE_VAL_LEN(p+1);
if (len <= HLL_SPARSE_VAL_MAX_LEN) {
HLL_SPARSE_VAL_SET(p+1,v1,len);
memmove(p,p+1,end-p);
sdsIncrLen(o->ptr,-1);
end--;
/* After a merge we reiterate without incrementing 'p'
* in order to try to merge the just merged value with
* a value on its right. */
continue;
}
}
}
p++;
}
/* Invalidate the cached cardinality. */
hdr = o->ptr;
HLL_INVALIDATE_CACHE(hdr);
return 1;
promote: /* Promote to dense representation. */
if (hllSparseToDense(o) == C_ERR) return -1; /* Corrupted HLL. */
hdr = o->ptr;
/* We need to call hllDenseAdd() to perform the operation after the
* conversion. However the result must be 1, since if we need to
* convert from sparse to dense a register requires to be updated.
*
* Note that this in turn means that PFADD will make sure the command
* is propagated to slaves / AOF, so if there is a sparse -> dense
* convertion, it will be performed in all the slaves as well. */
int dense_retval = hllDenseAdd(hdr->registers, ele, elesize);
serverAssert(dense_retval == 1);
return dense_retval;
}
/* Compute SUM(2^-reg) in the sparse representation.
* PE is an array with a pre-computer table of values 2^-reg indexed by reg.
* As a side effect the integer pointed by 'ezp' is set to the number
* of zero registers. */
double hllSparseSum(uint8_t *sparse, int sparselen, double *PE, int *ezp, int *invalid) {
double E = 0;
int ez = 0, idx = 0, runlen, regval;
uint8_t *end = sparse+sparselen, *p = sparse;
while(p < end) {
if (HLL_SPARSE_IS_ZERO(p)) {
runlen = HLL_SPARSE_ZERO_LEN(p);
idx += runlen;
ez += runlen;
/* Increment E at the end of the loop. */
p++;
} else if (HLL_SPARSE_IS_XZERO(p)) {
runlen = HLL_SPARSE_XZERO_LEN(p);
idx += runlen;
ez += runlen;
/* Increment E at the end of the loop. */
p += 2;
} else {
runlen = HLL_SPARSE_VAL_LEN(p);
regval = HLL_SPARSE_VAL_VALUE(p);
idx += runlen;
E += PE[regval]*runlen;
p++;
}
}
if (idx != HLL_REGISTERS && invalid) *invalid = 1;
E += ez; /* Add 2^0 'ez' times. */
*ezp = ez;
return E;
}
/* ========================= HyperLogLog Count ==============================
* This is the core of the algorithm where the approximated count is computed.
* The function uses the lower level hllDenseSum() and hllSparseSum() functions
* as helpers to compute the SUM(2^-reg) part of the computation, which is
* representation-specific, while all the rest is common. */
/* Implements the SUM operation for uint8_t data type which is only used
* internally as speedup for PFCOUNT with multiple keys. */
double hllRawSum(uint8_t *registers, double *PE, int *ezp) {
double E = 0;
int j, ez = 0;
uint64_t *word = (uint64_t*) registers;
uint8_t *bytes;
for (j = 0; j < HLL_REGISTERS/8; j++) {
if (*word == 0) {
ez += 8;
} else {
bytes = (uint8_t*) word;
if (bytes[0]) E += PE[bytes[0]]; else ez++;
if (bytes[1]) E += PE[bytes[1]]; else ez++;
if (bytes[2]) E += PE[bytes[2]]; else ez++;
if (bytes[3]) E += PE[bytes[3]]; else ez++;
if (bytes[4]) E += PE[bytes[4]]; else ez++;
if (bytes[5]) E += PE[bytes[5]]; else ez++;
if (bytes[6]) E += PE[bytes[6]]; else ez++;
if (bytes[7]) E += PE[bytes[7]]; else ez++;
}
word++;
}
E += ez; /* 2^(-reg[j]) is 1 when m is 0, add it 'ez' times for every
zero register in the HLL. */
*ezp = ez;
return E;
}
/* Return the approximated cardinality of the set based on the harmonic
* mean of the registers values. 'hdr' points to the start of the SDS
* representing the String object holding the HLL representation.
*
* If the sparse representation of the HLL object is not valid, the integer
* pointed by 'invalid' is set to non-zero, otherwise it is left untouched.
*
* hllCount() supports a special internal-only encoding of HLL_RAW, that
* is, hdr->registers will point to an uint8_t array of HLL_REGISTERS element.
* This is useful in order to speedup PFCOUNT when called against multiple
* keys (no need to work with 6-bit integers encoding). */
uint64_t hllCount(struct hllhdr *hdr, int *invalid) {
double m = HLL_REGISTERS;
double E, alpha = 0.7213/(1+1.079/m);
int j, ez; /* Number of registers equal to 0. */
/* We precompute 2^(-reg[j]) in a small table in order to
* speedup the computation of SUM(2^-register[0..i]). */
static int initialized = 0;
static double PE[64];
if (!initialized) {
PE[0] = 1; /* 2^(-reg[j]) is 1 when m is 0. */
for (j = 1; j < 64; j++) {
/* 2^(-reg[j]) is the same as 1/2^reg[j]. */
PE[j] = 1.0/(1ULL << j);
}
initialized = 1;
}
/* Compute SUM(2^-register[0..i]). */
if (hdr->encoding == HLL_DENSE) {
E = hllDenseSum(hdr->registers,PE,&ez);
} else if (hdr->encoding == HLL_SPARSE) {
E = hllSparseSum(hdr->registers,
sdslen((sds)hdr)-HLL_HDR_SIZE,PE,&ez,invalid);
} else if (hdr->encoding == HLL_RAW) {
E = hllRawSum(hdr->registers,PE,&ez);
} else {
serverPanic("Unknown HyperLogLog encoding in hllCount()");
}
/* Muliply the inverse of E for alpha_m * m^2 to have the raw estimate. */
E = (1/E)*alpha*m*m;
/* Use the LINEARCOUNTING algorithm for small cardinalities.