forked from openmc-dev/openmc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdistribution_angle.cpp
96 lines (79 loc) · 2.76 KB
/
distribution_angle.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
#include "openmc/distribution_angle.h"
#include <cmath> // for abs, copysign
#include "xtensor/xarray.hpp"
#include "xtensor/xview.hpp"
#include "openmc/endf.h"
#include "openmc/hdf5_interface.h"
#include "openmc/random_lcg.h"
#include "openmc/search.h"
#include "openmc/vector.h" // for vector
namespace openmc {
//==============================================================================
// AngleDistribution implementation
//==============================================================================
AngleDistribution::AngleDistribution(hid_t group)
{
// Get incoming energies
read_dataset(group, "energy", energy_);
int n_energy = energy_.size();
// Get outgoing energy distribution data
vector<int> offsets;
vector<int> interp;
hid_t dset = open_dataset(group, "mu");
read_attribute(dset, "offsets", offsets);
read_attribute(dset, "interpolation", interp);
xt::xarray<double> temp;
read_dataset(dset, temp);
close_dataset(dset);
for (int i = 0; i < n_energy; ++i) {
// Determine number of outgoing energies
int j = offsets[i];
int n;
if (i < n_energy - 1) {
n = offsets[i+1] - j;
} else {
n = temp.shape()[1] - j;
}
// Create and initialize tabular distribution
auto xs = xt::view(temp, 0, xt::range(j, j+n));
auto ps = xt::view(temp, 1, xt::range(j, j+n));
auto cs = xt::view(temp, 2, xt::range(j, j+n));
vector<double> x {xs.begin(), xs.end()};
vector<double> p {ps.begin(), ps.end()};
vector<double> c {cs.begin(), cs.end()};
// To get answers that match ACE data, for now we still use the tabulated
// CDF values that were passed through to the HDF5 library. At a later
// time, we can remove the CDF values from the HDF5 library and
// reconstruct them using the PDF
Tabular* mudist = new Tabular{x.data(), p.data(), n, int2interp(interp[i]),
c.data()};
distribution_.emplace_back(mudist);
}
}
double AngleDistribution::sample(double E, uint64_t* seed) const
{
// Determine number of incoming energies
auto n = energy_.size();
// Find energy bin and calculate interpolation factor -- if the energy is
// outside the range of the tabulated energies, choose the first or last bins
int i;
double r;
if (E < energy_[0]) {
i = 0;
r = 0.0;
} else if (E > energy_[n - 1]) {
i = n - 2;
r = 1.0;
} else {
i = lower_bound_index(energy_.begin(), energy_.end(), E);
r = (E - energy_[i])/(energy_[i+1] - energy_[i]);
}
// Sample between the ith and (i+1)th bin
if (r > prn(seed)) ++i;
// Sample i-th distribution
double mu = distribution_[i]->sample(seed);
// Make sure mu is in range [-1,1] and return
if (std::abs(mu) > 1.0) mu = std::copysign(1.0, mu);
return mu;
}
} // namespace openmc