forked from PaddlePaddle/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathranknet.py
135 lines (111 loc) · 4.51 KB
/
ranknet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import os
import sys
import gzip
import functools
import paddle.v2 as paddle
import numpy as np
from metrics import ndcg
# ranknet is the classic pairwise learning to rank algorithm
# http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf
def half_ranknet(name_prefix, input_dim):
"""
parameter in same name will be shared in paddle framework,
these parameters in ranknet can be used in shared state, e.g. left network and right network
shared parameters in detail
https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/api.md
"""
# data layer
data = paddle.layer.data(name_prefix + "/data",
paddle.data_type.dense_vector(input_dim))
# hidden layer
hd1 = paddle.layer.fc(
input=data,
size=10,
act=paddle.activation.Tanh(),
param_attr=paddle.attr.Param(initial_std=0.01, name="hidden_w1"))
# fully connect layer/ output layer
output = paddle.layer.fc(
input=hd1,
size=1,
act=paddle.activation.Linear(),
param_attr=paddle.attr.Param(initial_std=0.01, name="output"))
return output
def ranknet(input_dim):
# label layer
label = paddle.layer.data("label", paddle.data_type.dense_vector(1))
# reuse the parameter in half_ranknet
output_left = half_ranknet("left", input_dim)
output_right = half_ranknet("right", input_dim)
evaluator = paddle.evaluator.auc(input=output_left, label=label)
# rankcost layer
cost = paddle.layer.rank_cost(
name="cost", left=output_left, right=output_right, label=label)
return cost
def train_ranknet(num_passes):
train_reader = paddle.batch(
paddle.reader.shuffle(paddle.dataset.mq2007.train, buf_size=100),
batch_size=100)
test_reader = paddle.batch(paddle.dataset.mq2007.test, batch_size=100)
# mq2007 feature_dim = 46, dense format
# fc hidden_dim = 128
feature_dim = 46
cost = ranknet(feature_dim)
parameters = paddle.parameters.create(cost)
trainer = paddle.trainer.SGD(
cost=cost,
parameters=parameters,
update_equation=paddle.optimizer.Adam(learning_rate=2e-4))
# Define the input data order
feeding = {"label": 0, "left/data": 1, "right/data": 2}
# Define end batch and end pass event handler
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 100 == 0:
print "Pass %d Batch %d Cost %.9f" % (
event.pass_id, event.batch_id, event.cost)
else:
sys.stdout.write(".")
sys.stdout.flush()
if isinstance(event, paddle.event.EndPass):
result = trainer.test(reader=test_reader, feeding=feeding)
print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)
with gzip.open("ranknet_params_%d.tar.gz" % (event.pass_id),
"w") as f:
parameters.to_tar(f)
trainer.train(
reader=train_reader,
event_handler=event_handler,
feeding=feeding,
num_passes=num_passes)
def ranknet_infer(pass_id):
"""
load the trained model. And predict with plain txt input
"""
print "Begin to Infer..."
feature_dim = 46
# we just need half_ranknet to predict a rank score, which can be used in sort documents
output = half_ranknet("left", feature_dim)
parameters = paddle.parameters.Parameters.from_tar(
gzip.open("ranknet_params_%d.tar.gz" % (pass_id - 1)))
# load data of same query and relevance documents, need ranknet to rank these candidates
infer_query_id = []
infer_data = []
infer_doc_index = []
# convert to mq2007 built-in data format
# <query_id> <relevance_score> <feature_vector>
plain_txt_test = functools.partial(
paddle.dataset.mq2007.test, format="plain_txt")
for query_id, relevance_score, feature_vector in plain_txt_test():
infer_query_id.append(query_id)
infer_data.append(feature_vector)
# predict score of infer_data document. Re-sort the document base on predict score
# in descending order. then we build the ranking documents
scores = paddle.infer(
output_layer=output, parameters=parameters, input=infer_data)
for query_id, score in zip(infer_query_id, scores):
print "query_id : ", query_id, " ranknet rank document order : ", score
if __name__ == '__main__':
paddle.init(use_gpu=False, trainer_count=4)
pass_num = 2
train_ranknet(pass_num)
ranknet_infer(pass_id=pass_num - 1)