-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathupload_pictures.py
526 lines (449 loc) · 19.7 KB
/
upload_pictures.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
# coding:utf-8
# author: Livingbody
# date: 2020.05.06
from flask import Flask, render_template, request, jsonify
from werkzeug.utils import secure_filename
import os
import requests
import math
import numpy as np
import ssl
import json
import base64
from urllib.request import urlopen
from urllib.request import Request
from urllib.error import URLError
from urllib.parse import urlencode
import cv2
import time
from PIL import Image, ImageDraw, ImageFont
import numpy
from datetime import timedelta
ssl._create_default_https_context = ssl._create_unverified_context
API_KEY = 'eMgcu4RUSI4Vfo0nLR5OYaXU'
SECRET_KEY = 'kc2oB7wWKF88nNhXx4p9WRnRRzVlyYCM'
FACE_DETECT = "https://aip.baidubce.com/rest/2.0/face/v3/detect"
""" TOKEN start """
TOKEN_URL = 'https://aip.baidubce.com/oauth/2.0/token'
# 设置允许的文件格式
ALLOWED_EXTENSIONS = set(['png', 'jpg', 'bmp', 'jpeg'])
def allowed_file(filename):
filename = filename.lower()
return '.' in filename and filename.rsplit('.', 1)[1] in ALLOWED_EXTENSIONS
app = Flask(__name__)
# 设置静态文件缓存过期时间
app.send_file_max_age_default = timedelta(seconds=1)
# 当前文件所在路径
basepath = os.path.dirname(__file__)
# 首页
@app.route('/', methods=['POST', 'GET']) # 添加路由
def index():
return render_template('upload.html')
@app.route('/error', methods=['POST', 'GET']) # 添加路由
def error():
return render_template('404.html')
# 颜值
@app.route('/yanzhi', methods=['POST', 'GET']) # 添加路由
def myyanzhi():
if request.method == 'POST':
try:
f = request.files['file']
if not (f and allowed_file(f.filename)):
return render_template('404.html')
sourcefile = os.path.join('static/images/source', secure_filename(f.filename))
upload_path = os.path.join(basepath, sourcefile) # 注意:没有的文件夹一定要先创建,不然会提示没有该路径
f.save(upload_path)
filename = yanzhi_fun(upload_path)
print(filename)
return render_template('yanzhi_ok.html', val1=time.time(), sourcefile=sourcefile, filename=filename)
except:
return render_template('404.html')
return render_template('yanzhi.html')
# 上传并抠图
@app.route('/upload', methods=['POST', 'GET']) # 添加路由
def upload():
if request.method == 'POST':
try:
f = request.files['file']
if not (f and allowed_file(f.filename)):
# return jsonify({"error": 1001, "msg": "请检查上传的图片类型,仅限于png、PNG、jpg、JPG、bmp"})
return render_template('404.html')
sourcefile = os.path.join('static/images/source', secure_filename(f.filename))
upload_path = os.path.join(basepath, sourcefile) # 注意:没有的文件夹一定要先创建,不然会提示没有该路径
f.save(upload_path)
filename = convert(upload_path)
filename = os.path.join('static/images/target', filename)
print(filename)
return render_template('upload_ok.html', val1=time.time(), sourcefile=sourcefile, filename=filename)
except Exception:
return render_template('404.html')
return render_template('upload.html')
# 上传更换背景色
@app.route('/zhengjianzhao', methods=['POST', 'GET']) # 添加路由
def zhengjianzhao():
if request.method == 'POST':
try:
f = request.files['file']
if not (f and allowed_file(f.filename)):
# return jsonify({"error": 1001, "msg": "请检查上传的图片类型,仅限于png、PNG、jpg、JPG、bmp"})
return render_template('404.html')
sourcefile = os.path.join('static/images/source', secure_filename(f.filename))
upload_path = os.path.join(basepath, sourcefile) # 注意:没有的文件夹一定要先创建,不然会提示没有该路径
f.save(upload_path)
selected_color = request.form.get('selected_color')
print(selected_color)
filename = convert(upload_path)
change_color_imgfile = change_back_groundcolor(filename, selected_color)
filename = os.path.join('static/images/target', change_color_imgfile)
print(filename)
return render_template('zhengjianzhao_ok.html', val1=time.time(), sourcefile=sourcefile, filename=filename)
except Exception:
return render_template('404.html')
return render_template('zhengjianzhao.html')
# 美颜服务
@app.route('/meiyan', methods=['POST', 'GET']) # 添加路由
def meiyan():
if request.method == 'POST':
try:
f = request.files['file']
if not (f and allowed_file(f.filename)):
return render_template('404.html')
t = time.time()
dst_filename = str(t) + '.' + f.filename.split('.')[-1]
new_img_filename = 'meiyan' + dst_filename
sourcefile = os.path.join('static/images/source', new_img_filename)
sourcefilepath = os.path.join('static/images/source', new_img_filename)
sourcefilepath = os.path.join(basepath, sourcefile)
f.save(sourcefilepath)
selected_meiyan = request.form.get('selected_meiyan')
meiyan_imgfile = meiyan_fun(sourcefilepath, selected_meiyan)
filename = os.path.join('static/images/target', meiyan_imgfile)
return render_template('meiyan_ok.html', val1=time.time(), sourcefile=sourcefile, filename=filename)
except Exception:
return render_template('404.html')
return render_template('meiyan.html')
def fetch_token():
params = {'grant_type': 'client_credentials',
'client_id': API_KEY,
'client_secret': SECRET_KEY}
post_data = urlencode(params)
post_data = post_data.encode('utf-8')
req = Request(TOKEN_URL, post_data)
try:
f = urlopen(req, timeout=5)
result_str = f.read()
except URLError as err:
print('url error:' + 50 * '*')
print(err)
result_str = result_str.decode()
result = json.loads(result_str)
if ('access_token' in result.keys() and 'scope' in result.keys()):
if not 'brain_all_scope' in result['scope'].split(' '):
print('please ensure has check the ability')
exit()
return result['access_token']
else:
print('please overwrite the correct API_KEY and SECRET_KEY')
exit()
def read_file(image_path):
f = None
try:
f = open(image_path, 'rb')
return f.read()
except:
print('read image file fail')
return None
finally:
if f:
f.close()
def myrequest(url, data):
req = Request(url, data.encode('utf-8'))
has_error = False
try:
f = urlopen(req)
result_str = f.read()
result_str = result_str.decode()
return result_str
except URLError as err:
print(err)
def cv2ImgAddText(img, text, left, top, textColor=(0, 255, 0), textSize=20):
if (isinstance(img, numpy.ndarray)): # 判断是否OpenCV图片类型
img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
# 创建一个可以在给定图像上绘图的对象
draw = ImageDraw.Draw(img)
# 字体的格式
fontStyle = ImageFont.truetype(
"Alibaba-PuHuiTi-Regular.ttf", textSize, encoding="utf-8")
# 绘制文本
draw.text((left, top), text, textColor, font=fontStyle)
# 转换回OpenCV格式
return cv2.cvtColor(numpy.asarray(img), cv2.COLOR_RGB2BGR)
def yanzhi_fun(filename):
token = fetch_token()
# concat url
url = FACE_DETECT + "?access_token=" + token
file_content = read_file(filename)
response = myrequest(url, urlencode(
{
'image': base64.b64encode(file_content),
'image_type': 'BASE64',
'face_field': 'gender,age,beauty,glasses',
'max_face_num': 10
}))
data = json.loads(response)
img = cv2.imread(filename)
temp_img = img.copy()
result = data['result']
face_num = result['face_num']
targetfilename = 'yanzhi' + str(time.time()) + os.path.split(filename)[-1]
targetfilename = os.path.join(basepath, 'static/images/target', targetfilename)
print(targetfilename + 50 * '*')
if face_num > 0:
face_list = result['face_list']
for i in range(face_num):
temp_face = face_list[i]
temp_face_location = temp_face['location']
left = int(temp_face_location['left'])
top = int(temp_face_location['top'])
width = int(temp_face_location['width'])
height = int(temp_face_location['height'])
if face_list[i]["gender"]["type"] == "male":
gender = "男"
# female face
if face_list[i]["gender"]["type"] == "female":
gender = "女"
beauty = face_list[i]["beauty"]
simple_info = " 年龄: " + str(face_list[i]["age"]) + " 颜值:" + str(beauty)
cv2.rectangle(temp_img, (left, top), (left + width, top + height), (0, 255, 0), 1)
temp_img = cv2ImgAddText(temp_img, simple_info, left, top)
cv2.imwrite(targetfilename, temp_img, [int(cv2.IMWRITE_JPEG_QUALITY), 50])
return targetfilename
def cv2_to_base64(image):
data = cv2.imencode('.jpg', image)[1]
return base64.b64encode(data.tostring()).decode('utf8')
# 美颜
def meiyan_fun(filename, selected_meiyan):
source_img_path = filename
t = time.time()
dst_filename = str(t) + '.' + source_img_path.split('.')[-1]
new_img_filename = 'meiyan' + dst_filename
new_img_path = os.path.join(basepath, 'static/images/target', new_img_filename)
src_img = cv2.imread(source_img_path)
url = "http://127.0.0.1:8866/predict/face_landmark_localization"
data = {'images': [cv2_to_base64(cv2.imread(source_img_path))]}
headers = {"Content-type": "application/json"}
r = requests.post(url=url, headers=headers, data=json.dumps(data))
# 打印预测结果
result = r.json()["results"]
data = result[0]['data'][0]
face_landmark = np.array(data, dtype='int')
if isinstance(selected_meiyan, str):
# 瘦脸
if selected_meiyan == '4':
src_img = thin_face(src_img, face_landmark)
cv2.imwrite(new_img_path, src_img)
# 美白
elif selected_meiyan == '2':
src_img = whitening(src_img, face_landmark)
cv2.imwrite(new_img_path, src_img)
# 在瘦脸的基础上,继续放大双眼
elif selected_meiyan == '3':
enlarge_eyes(src_img, face_landmark, radius=13, strength=13)
cv2.imwrite(new_img_path, src_img)
# 全套
elif selected_meiyan == '1':
src_img = whitening(src_img, face_landmark)
# cv2.imwrite(new_img_path, src_img)
enlarge_eyes(src_img, face_landmark, radius=13, strength=13)
cv2.imwrite(new_img_path, src_img)
else:
raise Exception('选择设置有误')
else:
raise Exception('设置有误')
print('美颜照已生成,已保存到' + new_img_path)
return new_img_filename
# 去除背景色
def convert(upload_path):
file_list = [upload_path]
files = [("image", (open(item, "rb"))) for item in file_list]
# 指定图片分割方法为deeplabv3p_xception65_humanseg并发送post请求
url = "http://127.0.0.1:8866/predict/image/deeplabv3p_xception65_humanseg"
r = requests.post(url=url, files=files)
t = time.time()
filename = str(t) + '.jpg'
results = eval(r.json()["results"])
for item in results:
mypath = os.path.join(basepath, 'static/images/target', filename)
with open(mypath, "wb") as fp:
fp.write(base64.b64decode(item["base64"].split(',')[-1]))
item.pop("base64")
return filename
# 更换背景
def change_back_groundcolor(filename, background_color):
if isinstance(background_color, str):
if background_color == '1':
color = [255, 0, 0, 1]
elif background_color == '2':
color = [67, 142, 219, 1]
elif background_color == '3':
color = [255, 255, 255, 1]
else:
raise Exception('背景色设置有误')
elif isinstance(background_color, list) or isinstance(background_color, tuple):
color = [background_color[0], background_color[1], background_color[2], 1]
else:
raise Exception('背景色设置有误')
base_img_filename = os.path.join(basepath, 'static/images/target', filename)
new_img_filename = 'color' + filename
new_img_path = os.path.join(basepath, 'static/images/target', new_img_filename)
print(new_img_filename)
base_img = Image.open(base_img_filename)
img = np.array(base_img)
for i in range(0, img.shape[0]):
for j in range(0, img.shape[1]):
if img[i][j][3] < 1:
img[i][j] = color
im = Image.fromarray(img)
im = im.convert('RGB')
im.save(new_img_path)
print('证件照已生成,已保存到' + new_img_path)
return new_img_filename
def bilinear_insert(image, new_x, new_y):
"""
双线性插值法
"""
w, h, c = image.shape
if c == 3:
x1 = int(new_x)
x2 = x1 + 1
y1 = int(new_y)
y2 = y1 + 1
part1 = image[y1, x1].astype(np.float) * (float(x2) - new_x) * (float(y2) - new_y)
part2 = image[y1, x2].astype(np.float) * (new_x - float(x1)) * (float(y2) - new_y)
part3 = image[y2, x1].astype(np.float) * (float(x2) - new_x) * (new_y - float(y1))
part4 = image[y2, x2].astype(np.float) * (new_x - float(x1)) * (new_y - float(y1))
insertValue = part1 + part2 + part3 + part4
return insertValue.astype(np.int8)
def local_traslation_warp(image, start_point, end_point, radius):
"""
局部平移算法
"""
radius_square = math.pow(radius, 2)
image_cp = image.copy()
dist_se = math.pow(np.linalg.norm(end_point - start_point), 2)
height, width, channel = image.shape
for i in range(width):
for j in range(height):
# 计算该点是否在形变圆的范围之内
# 优化,第一步,直接判断是会在(start_point[0], start_point[1])的矩阵框中
if math.fabs(i - start_point[0]) > radius and math.fabs(j - start_point[1]) > radius:
continue
distance = (i - start_point[0]) * (i - start_point[0]) + (j - start_point[1]) * (j - start_point[1])
if (distance < radius_square):
# 计算出(i,j)坐标的原坐标
# 计算公式中右边平方号里的部分
ratio = (radius_square - distance) / (radius_square - distance + dist_se)
ratio = ratio * ratio
# 映射原位置
new_x = i - ratio * (end_point[0] - start_point[0])
new_y = j - ratio * (end_point[1] - start_point[1])
new_x = new_x if new_x >= 0 else 0
new_x = new_x if new_x < height - 1 else height - 2
new_y = new_y if new_y >= 0 else 0
new_y = new_y if new_y < width - 1 else width - 2
# 根据双线性插值法得到new_x, new_y的值
image_cp[j, i] = bilinear_insert(image, new_x, new_y)
return image_cp
def thin_face(image, face_landmark):
"""
实现自动人像瘦脸
image: 人像图片
face_landmark: 人脸关键点
"""
end_point = face_landmark[30]
# 瘦左脸,3号点到5号点的距离作为瘦脸距离
dist_left = np.linalg.norm(face_landmark[3] - face_landmark[5])
local_traslation_warp(image, face_landmark[3], end_point, dist_left)
# 瘦右脸,13号点到15号点的距离作为瘦脸距离
dist_right = np.linalg.norm(face_landmark[13] - face_landmark[15])
image = local_traslation_warp(image, face_landmark[13], end_point, dist_right)
return image
def enlarge_eyes(image, face_landmark, radius=15, strength=10):
"""
放大眼睛
image: 人像图片
face_landmark: 人脸关键点
radius: 眼睛放大范围半径
strength:眼睛放大程度
"""
# 以左眼最低点和最高点之间的中点为圆心
left_eye_top = face_landmark[37]
left_eye_bottom = face_landmark[41]
left_eye_center = (left_eye_top + left_eye_bottom) / 2
# 以右眼最低点和最高点之间的中点为圆心
right_eye_top = face_landmark[43]
right_eye_bottom = face_landmark[47]
right_eye_center = (right_eye_top + right_eye_bottom) / 2
# 放大双眼
local_zoom_warp(image, left_eye_center, radius=radius, strength=strength)
local_zoom_warp(image, right_eye_center, radius=radius, strength=strength)
def local_zoom_warp(image, point, radius, strength):
"""
图像局部缩放算法
"""
height = image.shape[0]
width = image.shape[1]
left = int(point[0] - radius) if point[0] - radius >= 0 else 0
top = int(point[1] - radius) if point[1] - radius >= 0 else 0
right = int(point[0] + radius) if point[0] + radius < width else width - 1
bottom = int(point[1] + radius) if point[1] + radius < height else height - 1
radius_square = math.pow(radius, 2)
for y in range(top, bottom):
offset_y = y - point[1]
for x in range(left, right):
offset_x = x - point[0]
dist_xy = offset_x * offset_x + offset_y * offset_y
if dist_xy <= radius_square:
scale = 1 - dist_xy / radius_square
scale = 1 - strength / 100 * scale
new_x = offset_x * scale + point[0]
new_y = offset_y * scale + point[1]
new_x = new_x if new_x >= 0 else 0
new_x = new_x if new_x < height - 1 else height - 2
new_y = new_y if new_y >= 0 else 0
new_y = new_y if new_y < width - 1 else width - 2
image[y, x] = bilinear_insert(image, new_x, new_y)
def whitening(img, face_landmark):
"""
美白
"""
# 简单估计额头所在区域
# 根据0号、16号点画出额头(以0号、16号点所在线段为直径的半圆)
radius = (np.linalg.norm(face_landmark[0] - face_landmark[16]) / 2).astype('int32')
center_abs = tuple(((face_landmark[0] + face_landmark[16]) / 2).astype('int32'))
angle = np.degrees(np.arctan((lambda l: l[1] / l[0])(face_landmark[16] - face_landmark[0]))).astype('int32')
face = np.zeros_like(img)
cv2.ellipse(face, center_abs, (radius, radius), angle, 180, 360, (255, 255, 255), 2)
points = face_landmark[0:17]
hull = cv2.convexHull(points)
cv2.polylines(face, [hull], True, (255, 255, 255), 2)
index = face > 0
face[index] = img[index]
dst = np.zeros_like(face)
# v1:磨皮程度
v1 = 9
# v2: 细节程度
v2 = 2
tmp1 = cv2.bilateralFilter(face, v1 * 5, v1 * 12.5, v1 * 12.5)
tmp1 = cv2.subtract(tmp1, face)
tmp1 = cv2.add(tmp1, (10, 10, 10, 128))
tmp1 = cv2.GaussianBlur(tmp1, (2 * v2 - 1, 2 * v2 - 1), 0)
tmp1 = cv2.add(img, tmp1)
dst = cv2.addWeighted(img, 0.1, tmp1, 0.9, 0.0)
dst = cv2.add(dst, (10, 10, 10, 255))
index = dst > 0
img[index] = dst[index]
return img
if __name__ == '__main__':
# app.debug = True
app.run(host='0.0.0.0', port=8080, debug=False)