Skip to content

Fast 2d geometry math: Vector2, Rectangle, Circle, Matrix2x3 (2D transformation), Circle, BoundingBox, Line2, Segment2, Intersections, Distances, Transitions (animation/tween), Noise, Random numbers

Notifications You must be signed in to change notification settings

llafuente/js-2dmath

Repository files navigation

js-2dmath Build Status

Fast 2d geometry math: Vector2, Rectangle, Circle, Matrix2x3 (2D transformation), Circle, BoundingBox, Line2, Segment2, Intersections, Distances, Transitions (animation/tween), Noise, Random numbers.

So the objective is "Be fast"

Help needed / TODO LIST

  • API completeness
  • Testing
  • did I miss anything useful?

Performance? HOW?/TIPS

  • avoid new
  • use arrays instead of objects, this is huge performance boost!
  • avoid creating unnecessary variables.
  • cache every function call to a single variable. example: Vec2.add -> vec2_add
  • avoid return new arrays (except for create/clone)
  • if you access two time an array, cache it

I'm sure i miss some of my own performance tips, PR if you find any error or find a better way!

Browser

npm run-script browserify

Will generate js-2dmath-browser.js that you can include in any browser.

What can you do ?

See some examples that we use as tests :)

API

This doc is autogenerated with falafel see doc.js for more fun! :)

Vec2, Line2, Segment2, Rectangle, AABB2, Circle, Matrix2D, Polygon, Beizer, Triangle, Intersection, Distance, Transitions, Xorshift, Noise

Vec2

Vec2 is represented as a two coordinates array

[x, y]

  • create (x: Number, y: Number): Vec2

    Create a Vec2 given two coords

  • dFromPolar (length: Number, degrees: Number (Degrees)): Vec2

    Create a Vec2 given length and angle

  • fromPolar (length: Number, radians: Number (Radians)): Vec2

    Create a Vec2 given length and angle

  • zero (): Vec2

    Create an empty Vec2

  • clone (v1: Vec2): Vec2

    Clone given vec2

  • equals (v1: Vec2, v2: Vec2): Boolean

    Returns true if both vectors are equal(same coords)

  • equalsEpsilon (v1: Vec2, v2: Vec2): Boolean

    Returns true if both vectors are "almost(Math.EPS)" equal

  • gt (v1: Vec2, v2: Vec2): Boolean

    Returns true both coordinates of v1 area greater than v2

  • lt (v1: Vec2, v2: Vec2): Boolean

    Returns true both coordinates of v1 area lesser than v2

  • near (v1: Vec2, v2: Vec2, dist: Number): Boolean

    Returns true if the distance between v1 and v2 is less than dist.

  • isValid (v1: Vec2): Boolean

    The vector does not contain any not number value: ±Infinity || NaN

  • isNaN (v1: Vec2): Boolean

    Any coordinate is NaN

  • copy (out: Vec2, v1: Vec2): Vec2

    Copy v1 into out

  • negate (out: Vec2, v1: Vec2): Vec2

    Negate v1 and return it into out

  • perpendicular (out: Vec2, v1: Vec2): Vec2

    Rotate the vector clockwise

  • normalize (out: Vec2, v1: Vec2): Vec2

  • rperpendicular (out: Vec2, v1: Vec2): Vec2

    Rotate the vector counterclockwise

  • lerp (out: Vec2, v1: Vec2, v2: Vec2, t: Number): Vec2

    Linearly interpolate between a and b.

  • lerpconst (out: Vec2, v1: Vec2, v2: Vec2, d: Number): Vec2

    Linearly interpolate between v1 towards v2 by distance d.

  • slerp (out: Vec2, v1: Vec2, v2: Vec2, t: Number): Vec2

    Spherical linearly interpolate between v1 and v2.

  • slerpconst (out: Vec2, v1: Vec2, v2: Vec2, radians: Number (Radians)): Vec2

    Spherical linearly interpolate between v1 towards v2 by no more than angle a in radians.

  • forAngle (v1: Vec2, radians: Number (Radians)): Vec2

    Returns the unit length vector for the given angle(in radians).

  • project (out: Vec2, v1: Vec2, v2: Vec2): Vec2

    Returns the vector projection of v1 onto v2.

  • rotate (out: Vec2, v1: Vec2, radians: Number (Radians), center: Vec2): Vec2

    Rotates the point by the given angle around an optional center point.

    The object itself is not modified.

    Read more about angle units and orientation in the description of the

    {@link #angle} property.

  • rotateVec (out: Vec2, v1: Vec2, v2: Vec2): Vec2

  • unrotateVec (out: Vec2, v1: Vec2, v2: Vec2): Vec2

  • midPoint (out: Vec2, v1: Vec2, v2: Vec2): Vec2

  • reflect (out: Vec2, v1: Vec2, v2: Vec2): Vec2

  • subtract (out: Vec2, v1: Vec2, v2: Vec2): Vec2

  • subtract2 (out: Vec2, v1: Vec2, x: Number, y: Number): Vec2

  • add (out: Vec2, v1: Vec2, v2: Vec2): Vec2

  • add2 (out: Vec2, v1: Vec2, x: Number, y: Number): Vec2

  • multiply (out: Vec2, v1: Vec2, v2: Vec2): Vec2

  • multiply2 (out: Vec2, v1: Vec2, x: Number, y: Number): Vec2

  • divide (out: Vec2, v1: Vec2, v2: Vec2): Vec2

  • divide2 (out: Vec2, v1: Vec2, x: Number, y: Number): Vec2

  • scale (out: Vec2, v1: Vec2, factor: Number): Vec2

  • pow (out: Vec2, v1: Vec2, factor: Number): Vec2

  • max (out: Vec2, v1: Vec2, v2: Vec2): Vec2

  • min (out: Vec2, v1: Vec2, v2: Vec2): Vec2

  • abs (out: Vec2, v1: Vec2): Vec2

  • scaleAndAdd (out: Vec2, v1: Vec2, v2: Vec2, factor: Number): Vec2

  • clamp (out: Vec2, v1: Vec2, length: Number): Vec2

  • magnitude (v1: Vec2, v2: Vec2): Number

  • compare (v1: Vec2, v2: Vec2): Number

    0 equal, 1 top, 2 top-right, 3 right, 4 bottom right, 5 bottom, 6 bottom-left, 7 left, 8 top-left

  • dot (v1: Vec2, v2: Vec2): Number

    v1 · v2 = |a| * |b| * sin θ

  • cross (v1: Vec2, v2: Vec2): Number

    v1 × v2 = |a| * |b| * sin θ

  • cossVZ (out: Vec2, vec2: Vec2, factor: Number)

    Cross product between a vector and the Z component of a vector

    @todo test use rprependicular ?

  • cossZV (out: Vec2, factor: Number, vec2: Vec2)

    Cross product between a vector and the Z component of a vector

    @todo test use prependicular ?

  • toAngle (v1: Vec2): Number

  • angleTo (v1: Vec2, v2: Vec2): Number

  • distance (v1: Vec2, v2: Vec2): Number

    Returns the distance between v1 and v2.

  • sqrDistance (v1: Vec2, v2: Vec2): Number

    you length only need to compare lengths.

  • length (v1: Vec2): Number

    Returns the length.

  • sqrLength (v1: Vec2): Number

  • within (v1: Vec2, v2: Vec2, v3: Vec2): Number

    Return true if v2 is between v1 and v3(inclusive)

  • $within (px: Number, py: Number, qx: Number, qy: Number, rx: Number, ry: Number): Number

    Return true if q is between p and r(inclusive)

  • $near (px: Number, py: Number, qx: Number, qy: Number, dist: Number): Boolean

    p is near x ± dist ("box test")

  • $cross (x1: Number, y1: Number, x2: Number, y2: Number)

  • $dot (x1: Number, y1: Number, x2: Number, y2: Number)

  • interpolate (out: Vec2, v1: Vec2, v2: Vec2, t: Number)

    see: lerp

  • eq (v1: Vec2, v2: Vec2)

    see: equals

  • sub (out: Vec2, v1: Vec2, v2: Vec2)

    see: subtract

  • sub2 (out: Vec2, v1: Vec2, x: Number, y: Number)

    see: subtract2

  • mul (out: Vec2, v1: Vec2, v2: Vec2)

    see: multiply

  • mul2 (out: Vec2, v1: Vec2, x: Number, y: Number)

    see: multiply2

  • div (out: Vec2, v1: Vec2, v2: Vec2)

    see: divide

  • div2 (out: Vec2, v1: Vec2, x: Number, y: Number)

    see: divide2

Line2

  • create (x: Number, y: Number, m: Number): Line2

    Point-Slope Equation of a Line: y - y1 = m(x - x1)

  • zero (): Line2

  • fromVec2 (v1: Vec2, v2: Vec2): Line2

  • from2Points (x1: Number, y1: Number, x2: Number, y2: Number): Line2

  • fromSegment2 (seg2: Segment2): Line2

  • copy (out: Line2, line2: Line2): Line2

  • clone (line2: Line2): Line2

  • add (out: Line2, line2: Line2, v1: Vec2): Line2

  • subtract (out: Line2, line2: Line2, v1: Vec2): Line2

  • offset (out: Line2, line2: Line2, offset: Number): Line2

  • rotate (out: Line2, line2: Line2, radians: Number (Radians)): Line2

  • reflection ()

  • translate (out: Line2, line2: Line2, v1: Vec2)

    see: add

  • sub (out: Line2, line2: Line2, v1: Vec2)

    see: subtract

Segment2

Segment2 is represented by a 4 coordinates array

[x1, y1, x2, y2] normalized so x1 < x2

  • create (x1: Number, y1: Number, x2: Number, y2: Number): Segment2

  • normalize (out: Segment2, seg2: Segment2): Segment2

  • clone (seg2: Segment2): Segment2

  • copy (out: Segment2, seg2: Segment2): Segment2

  • translate (out: Segment2, seg2: Segment2, vec2: Vec2): Segment2

  • length (seg2: Segment2): Number

  • sqrLength (seg2: Segment2): Number

  • midPoint (out_vec2: Vec2, seg2: Segment2): Vec2

  • slope (seg2: Segment2): Number

  • angle (seg2: Segment2): Number

  • cross (seg2: Segment2, vec2: Vec2): Number

  • isCollinear (seg2: Segment2, vec2: Vec2): Boolean

  • isParallel (seg2: Segment2, seg2_2: Segment2): Boolean

    @todo do it!

  • isVec2Inside (seg2: Segment2, vec2: Vec2): Boolean

  • isAbove (seg2: Segment2, vec2: Vec2, cached_seg2_min_angle: Number): Boolean

  • leftNormal (out_vec2: Vec2, seg2: Segment2): Vec2

  • rightNormal (out_vec2: Vec2, seg2: Segment2): Vec2

  • closestPoint (out_vec2: Vec2, seg2: Segment2, vec2: Vec2): Vec2

  • $closestPoint (out_vec2: Vec2, x1: Number, y1: Number, x2: Number, y2: Number, x3: Number, y3: Number): Vec2

    @todo optimize, "inline the if/else"

  • $collinear (x1: Number, y1: Number, x2: Number, y2: Number, x3: Number, y3: Number): Boolean

  • $inside (x1: Number, x2: Number, y1: Number, y2: Number, x3: Number, y3: Number): Boolean

Rectangle

  • create (x1: Number, y1: Number, x2: Number, y2: Number): Rectangle

    Rectangle is an array with [a: Vec2, b: Vec2, normalized: Boolean]

  • fromBB (bb2: AABB2): Rectangle

  • zero (): Rectangle

  • clone (rect: Rectangle): Rectangle

  • copy (out: Rectangle, rect: Rectangle): Rectangle

  • normalize (out: Rectangle, rect: Rectangle, force: Boolean): Rectangle

    a -> bottom-left

    a -> top-right

  • center (out_vec2: Vec2, rect: Rectangle): Vec2

  • translate (out: Rectangle, rect: Rectangle, vec2: Vec2): Rectangle

  • distance (rect: Rectangle, rect2: Rectangle): Number

  • area (rect: Rectangle): Number

  • isVec2Inside (rect: Rectangle, vec2: Vec2): Boolean

  • perimeter (rect: Rectangle): Number

AABB2

  • TOPLEFT = 1
  • TOPMIDDLE = 2
  • TOPRIGHT = 3
  • CENTERLEFT = 4
  • CENTER = 5
  • CENTERRIGHT = 6
  • BOTTOMLEFT = 7
  • BOTTOM = 8
  • BOTTOMRIGHT = 9

  • create (l: Number, b: Number, r: Number, t: Number): AABB

    BoundingBox2 is an array [left: Number, bottom: Number, right: Number, top: Number, nomalized: Boolean]

  • fromSegment2 (seg2: Segment2): AABB

  • fromCircle (circle: Circle): AABB

  • fromRectangle (rect: Rectangle): AABB

  • zero (): AABB

  • clone (aabb2: AABB2): AABB

  • copy (out: AABB2, aabb2: AABB2): AABB

  • expand (out: AABB2, aabb2: AABB2, margin: Number): AABB

  • merge (out: AABB2, aabb2_1: AABB2, aabb2_2: AABB2): AABB

  • offsetMerge (out: AABB2, aabb2_1: AABB2, aabb2_2: AABB2, vec2_offset: Vec2): AABB

  • osMerge (out: AABB2, aabb2_1: AABB2, aabb2_2: AABB2, vec2_offset: Vec2, vec2_scale: Vec2): AABB

    offset & scale merge

  • area (aabb2: AABB2): Number

  • normalize (out: AABB2, aabb2: AABB2): AABB

  • translate (out: AABB2, aabb2: AABB2, vec2: Vec2): AABB

  • clampVec (out_vec2: Vec2, aabb2: AABB2, vec2: Vec2): Vec2

  • center (out_vec2: Vec2, aabb2: AABB2)

  • align (out_vec2: Vec2, aabb2: AABB2, alignament: Number): Vec2

    alignament values: AABB2.TOPLEFT, AABB2.TOPMIDDLE, AABB2.TOPRIGHT, AABB2.CENTERLEFT, AABB2.CENTER, AABB2.CENTERRIGHT, AABB2.BOTTOMLEFT, AABB2.BOTTOM, AABB2.BOTTOMRIGH

  • isVec2Inside (aabb2: AABB2, vec2: Vec2)

    @return {Boolean}

  • isAABB2Inside (aabb2: AABB2, aabb2_2: AABB2)

    @return {Boolean}

  • perimeter (aabb2: AABB2): Number

Circle

  • create (x: Number, y: Number, radius: Number): Circle

  • fromVec2 (vec2: Vec2, radius: Number): Circle

  • fromSegment2 (seg2: Segment2): Circle

    Create a Circle with seg2 as diameter

  • fromRectangle (rect: Rectangle, inside: Boolean): Circle

  • fromTriangle (tri: Triangle, inside: Boolean, circumcenter: Boolean): Circle

    @todo review inside cases

  • clone (circle: Circle): Circle

  • copy (out: Circle, circle: Circle): Circle

  • translate (out: Circle, circle: Circle, vec2: Vec2): Circle

  • moveTo (out: Circle, circle: Circle, vec2: Vec2): Circle

  • distance (circle: Circle, circle_2: Circle): Number

  • length (circle: Circle): Number

  • area (circle: Circle): Number

  • isVec2Inside (circle: Circle, vec2: Vec2): Boolean

  • closestPoint (out_vec2: Vec2, circle: Circle, vec2: Vec2): Vec2

  • perimeter (circle: Circle)

    see: length

  • move (out: Circle, circle: Circle, vec2: Vec2)

    see: moveTo

Matrix2D

2x3 Transformation matrix used in 2D represented as a 8 coordinates array

[m11:Number, m12:Number, m13:Number, m21:Number, m22:Number, m23:Number, cache, nomalize:boolean]

cache = [xScale:Number, yScale:Number, xSkew:Number, yScale:Number, rotation:Number]

why cache? to speed up many operations avoiding tan/atan2/sqrt

  • create (): Matrix2D

    Creates a new identity 2x3 matrix

  • copy (out: Matrix2D, m2d: Matrix2D): Matrix2D

    Copy m2d into out

  • identity (out: Matrix2D): Matrix2D

    Copy m2d into out

  • dRotate (out: Matrix2D, m2d: Matrix2D, degrees: Number (Degrees)): Matrix2D

    Rotates a Matrix2D by the given angle in degrees(increment rotation)

    @note increment rotation

  • rotate (out: Matrix2D, m2d: Matrix2D, radians: Number (Radians)): Matrix2D

    Rotates a Matrix2D by the given angle in radians(increment rotation)

    @note increment rotation

  • dRotation (out: Matrix2D, m2d: Matrix2D, degrees: Number (Degrees)): Matrix2D

    Set rotation of a Matrix2D by the given angle in degrees(set rotation)

    @note set rotation

  • rotation (out: Matrix2D, m2d: Matrix2D, radians: Number (Radians)): Matrix2D

    Set rotation of a Matrix2D by the given angle in radians(set rotation)

    @note set rotation

  • translate (out: Matrix2D, m2d: Matrix2D, vec2: Vec2): Matrix2D

    Translates given Matrix2D by the dimensions in the given vec2

    @note This translation is affected by rotation/skew

    @note increment position

    see: gTranslate

  • gTranslate (out: Matrix2D, m2d: Matrix2D, vec2: Vec2): Matrix2D

    Translates given Matrix2D by the dimensions in the given vec2

    @note This translation is NOT affected by rotation/skew

    @note increment position

    see: translate

  • position (out: Matrix2D, m2d: Matrix2D, vec2: Vec2): Matrix2D

    Set Matrix2D position

    @note This translation is NOT affected by rotation/skew

    @note set position

    see: gTranslate

    see: translate

  • scale (out: Matrix2D, m2d: Matrix2D, vec2: Vec2): Matrix2D

    Scales the Matrix2D by the dimensions in the given vec2

    @note incremental scale

    @note do not affect position

    see: scalation

  • scalation (out: Matrix2D, m2d: Matrix2D, vec2: Vec2): Matrix2D

    Set the Matrix2D scale by the dimensions in the given vec2

    @note set scale

    @note do not affect position

    see: scale

  • dSkewX (out: Matrix2D, m2d: Matrix2D, degrees: Number (Degrees)): Matrix2D

    Increment the Matrix2D x-skew by given degrees

    @note increment skewX

    see: skewX

  • skewX (out: Matrix2D, m2d: Matrix2D, radians: Number (Radians)): Matrix2D

    Increment the Matrix2D x-skew by given radians

    @note increment skewX

  • dSkewY (out: Matrix2D, m2d: Matrix2D, degrees: Number (Degrees)): Matrix2D

    Increment the Matrix2D y-skew by given degrees

    @note increment skewY

  • skewY (out: Matrix2D, m2d: Matrix2D, radians: Number (Radians)): Matrix2D

    Increment the Matrix2D y-skew by given radians

    @note increment skewY

  • dSkew (out: Matrix2D, m2d: Matrix2D, vec2_degrees: Vec2 (Degrees)): Matrix2D

    Increment the Matrix2D skew y by given degrees in vec2_degrees

    @note increment skew

    see: dSetSkew

  • skew (out: Matrix2D, m2d: Matrix2D, vec2: Vec2): Matrix2D

    Increment the Matrix2D skew y by given radians in vec2

    @note increment skew

  • dSetSkew (out: Matrix2D, m2d: Matrix2D, vec2_degrees: Vec2 (Degrees)): Matrix2D

    Set the Matrix2D skew y by given degrees in vec2_degrees

    @note set skew

    see: setSkew

  • setSkew (out: Matrix2D, m2d: Matrix2D, vec2: Vec2): Matrix2D

    Set the Matrix2D skew y by given radians in vec2

    @note set skew

  • multiply (out: Matrix2D, m2d: Matrix2D, m2d_2: Matrix2D): Matrix2D

    Multiplies two Matrix2D's

  • multiplyVec2 (out_vec2: Vec2, m2d: Matrix2D, vec2: Vec2): Vec2

    Multiplies a Matrix2D and a Vec2

  • getPosition (out_vec2: Vec2, m2d: Matrix2D): Vec2

    Retrieve current position as Vec2

  • getScale (out_vec2: Vec2, m2d: Matrix2D): Vec2

    Retrieve current scale as Vec2

  • getSkew (out_vec2: Vec2, m2d: Matrix2D): Vec2

    Retrieve current skew as Vec2

  • reflect (out: Matrix2D, m2d: Matrix2D): Matrix2D

    Alias of rotate 180º(PI)

  • inverse (out: Matrix2D, m2d: Matrix2D)

    @TODO this a transformation matrix, what inverse means for us, mirror ?

  • transpose (out: Matrix2D, m2d: Matrix2D)

    @TODO needed ?

  • determinant (out: Matrix2D, m2d: Matrix2D)

    @TODO review & test

  • translationMatrix (x: Number, y: Number): Matrix2D

    Returns a 3x2 2D column-major translation matrix for x and y.

  • dSkewXMatrix (degrees: Number (Degrees)): Matrix2D

    Returns a 3x2 2D column-major y-skew matrix for the given degrees.

  • skewXMatrix (radians: Number (Radians)): Matrix2D

    Returns a 3x2 2D column-major y-skew matrix for the given radians.

  • dSkewYMatrix (degrees: Number (Degrees)): Matrix2D

    Returns a 3x2 2D column-major y-skew matrix for the given degrees.

  • skewYMatrix (radians: Number (Radians)): Matrix2D

    Returns a 3x2 2D column-major y-skew matrix for the given radians.

  • rotationMatrix (radians: Number (Radians)): Matrix2D

    Returns a 3x2 2D column-major y-skew matrix for the given radians.

  • scalingMatrix (x: Number, y: Number)

    Returns a 3x2 2D column-major scaling matrix for sx and sy.

  • interpolate (out: Matrix2D, m2d: Matrix2D, m2d_2: Matrix2D, factor: Number)

    Interpolate two matrixes by given factor.

    Used in conjunction with Transitions and you will have nice transformations :)

  • toAngle (m2d: Matrix2D)

    For completeness because it's not need in the current implementation m2d[6][4]

  • dSetRotation (out: Matrix2D, m2d: Matrix2D, degrees: Number (Degrees))

    see: dRotation

  • setRotation (out: Matrix2D, m2d: Matrix2D, radians: Number (Radians))

    see: rotation

  • setPosition (out: Matrix2D, m2d: Matrix2D, vec2: Vec2)

    see: position

  • setScale (out: Matrix2D, m2d: Matrix2D, vec2: Vec2)

    see: scalation

Polygon

  • create (): Polygon

  • fromAABB (aabb2: AABB2)

  • centroid (out_vec2: Vec2, poly: Polygon): Vec2

  • recenter (out: Polygon, poly: Polygon): Polygon

  • area (poly: Polygon): Number

Beizer

  • cubic (cp0x: Number, cp0y: Number, cp1x: Number, cp1y: Number, cp2x: Number, cp2y: Number, cp3x: Number, cp3y: Number): Beizer

    cp0 - start point

    cp1 - start control point

    cp2 - end control point

    cp3 - end

  • quadric (cp0x: Number, cp0y: Number, cp1x: Number, cp1y: Number, cp2x: Number, cp2y: Number): Beizer

  • get (out_vec2: Vec2, curve: Beizer, t: Number): Vec2

  • getPoints (curve: Beizer, npoints: Number): Array

  • length (curve: Beizer, step: Number): Number

    Calculate the curve length by incrementally solving the curve every substep=CAAT.Curve.k. This value defaults

    to .05 so at least 20 iterations will be performed.

    @todo some kind of cache maybe it's needed!

Triangle

  • create (x1: Number, y1: Number, x2: Number, y2: Number, x3: Number, y3: Number): Triangle

    A, B, C

  • abMidPoint (out_vec2: Vec2, tri: Triangle): Vec2

  • bcMidPoint (out_vec2: Vec2, tri: Triangle): Vec2

  • caMidPoint (out_vec2: Vec2, tri: Triangle): Vec2

  • midTriangle (out: Triangle, tri: Triangle): Triangle

  • perimeter (tri: Triangle): Number

  • zero (): Triangle

  • clone (tri: Triangle): Triangle

  • copy (out: Triangle, tri: Triangle): Triangle

  • centroid (out_vec2: Vec2, tri: Triangle): Vec2

  • incenter (out_vec2: Vec2, tri: Triangle): Vec2

  • circumcenter (out_vec2: Vec2, tri: Triangle): Vec2

  • area (tri: Triangle): Number

  • translate (out: Triangle, tri: Triangle, vec2: Vec2): Triangle

  • center (out_vec2: Vec2, tri: Triangle)

    see: centroid

Intersection

  • OUTSIDE = 1
  • PARALLEL = 2
  • COLLIDE = 8
  • INSIDE = 4
  • COINCIDENT = 16
  • TANGENT = 32

  • near (num: Number, num2: Number)

  • $rectangle_rectangle (x1: Number, y1: Number, x2: Number, y2: Number, x3: Number, y3: Number, x4: Number, y4: Number, collision: Boolean, distance: Boolean)

  • $rectangle_vec2 (x1: Number, y1: Number, x2: Number, y2: Number, x3: Number, y3: Number, collision: Boolean, distance: Boolean)

  • $circle_segment2 (cx: Number, cy: Number, r: Number, x1: Number, y1: Number, x2: Number, y2: Number, collision: Boolean, distance: Boolean)

  • $circle_rectangle (cx: Number, cy: Number, r: Number, x1: Number, y1: Number, x2: Number, y2: Number, collision: Boolean, distance: Boolean)

    Use LineP1 instead of LocalP1 because we want our answer in global

    space, not the circle's local space

  • bb2_bb2 (bb2_1: AABB2, bb2_2: AABB2, collision: Boolean, distance: Boolean)

  • bb2_vec2 (bb2: AABB2, vec2: Vec2, collision: Boolean, distance: Boolean)

  • vec2_bb2 (vec2: Vec2, bb2: AABB2, collision: Boolean, distance: Boolean)

  • rectangle_rectangle (rect1: Rectangle, rect2: Rectangle, collision: Boolean, distance: Boolean)

    TODO segments of collision

  • bb2_rectangle (bb2: AABB2, rect: Rectangle, collision: Boolean, distance: Boolean)

    TODO segments of collision

  • rectangle_bb2 (rect: Rectangle, bb2: AABB2, collision: Boolean, distance: Boolean)

  • rectangle_vec2 (rect: Rectangle, vec2: Vec2, collision: Boolean, distance: Boolean)

  • vec2_rectangle (vec2: Vec2, rect: Rectangle, collision: Boolean, distance: Boolean)

  • circle_vec2 (circle: Circle, vec2: Vec2, collision: Boolean, distance: Boolean)

  • vec2_circle (vec2: Vec2, circle: Circle, collision: Boolean, distance: Boolean)

  • circle_circle (circle_1: Circle, circle_2: Circle, collision: Boolean, distance: Boolean)

  • circle_bb2 (circle: Circle, bb2: AABB2, collision: Boolean, distance: Boolean)

  • bb2_circle (bb2: AABB2, circle: Circle, collision: Boolean, distance: Boolean)

  • circle_rectangle (circle: Circle, rect: Rectangle, collision: Boolean, distance: Boolean)

  • rectangle_circle (rect: Rectangle, circle: Circle, collision: Boolean, distance: Boolean)

  • circle_segment2 (circle: Circle, seg2: Segment2, collision: Boolean, distance: Boolean)

  • segment2_circle (seg2: Segment2, circle: Circle, collision: Boolean, distance: Boolean)

  • line2_line2 (line2_1: Line2, line2_2: Line2, collision: Boolean, distance: Boolean)

  • segment2_segment2 (seg2_1: Segment2, seg2_2: Segment2, collision: Boolean, distance: Boolean)

  • segment2_vec2 (seg2: Segment2, vec2: Vec2)

    Is the intersection along the the segments

  • vec2_segment2 (vec2: Vec2, seg2: Segment2)

Distance

  • fourPoints (x1: Number, y1: Number, x2: Number, y2: Number)

  • sqrFourPoints (x1: Number, y1: Number, x2: Number, y2: Number)

  • line2_vec2 (line2: Line2, vec2: Vec2)

  • segment2_vec2 (seg2: Segment2, vec2: Vec2)

  • rectangle_vec2 (rect: Rectangle, vec2: Vec2)

  • fourPointsSq (x1: Number, y1: Number, x2: Number, y2: Number)

    see: sqrFourPoints

Transitions

  • LINK_CHAIN = 1
  • LINK_STOP = 2
  • LINK_IGNORE = 3
  • LINK_CANCEL = 4

  • Pow (pos: Number, x: Number)

  • Expo (pos: Number)

  • Circ (pos: Number)

  • Sine (pos: Number)

  • Back (pos: Number, x: Number)

  • Bounce (pos: Number)

  • Elastic (pos: Number, x: Number)

  • linear (pos: Number)

    Just return what you sent

  • create (name: String, transition: Function)

    Wrap your transaction with In/Out/InOut modifiers.

  • animate (obj: Object, prop: String, values: Mixed, ioptions: Object)

    Animate object properties.

    obj must be writable or at least have defined $__tween

    prop property name to animate

    values keys are numbers from 0 to 100, values could be anything

    ioptions

    mandatory

    • time: in ms

    optional

    • transition Transition.XXX, or a valid compatible function Default: linear

    • link Transition.LINK_XXX Default: CHAIN

    • render function(obj, property, new_value) {}

    • parser function(obj, property) { return ; }

    • tickEvent event name Default: "tick"

    • endEvent event name Default: "animation:end"

    • startEvent event name Default: "animation:star"

    • chainEvent event name Default: "animation:chain"

  • tween (obj: Object, params: Object, options: Object)

  • PowIn (pos: Number, x: Number)

    see: Pow

  • PowOut (pos: Number)

  • PowInOut (pos: Number)

  • ExpoIn (pos: Number)

    see: Expo

  • ExpoOut (pos: Number)

  • ExpoInOut (pos: Number)

  • CircIn (pos: Number)

    see: Circ

  • CircOut (pos: Number)

  • CircInOut (pos: Number)

  • SineIn (pos: Number)

    see: Sine

  • SineOut (pos: Number)

  • SineInOut (pos: Number)

  • BackIn (pos: Number, x: Number)

    see: Back

  • BackOut (pos: Number)

  • BackInOut (pos: Number)

  • BounceIn (pos: Number)

    see: Bounce

  • BounceOut (pos: Number)

  • BounceInOut (pos: Number)

  • ElasticIn (pos: Number, x: Number)

    see: Elastic

  • ElasticOut (pos: Number)

  • ElasticInOut (pos: Number)

  • Quad (pos: Number)

  • QuadIn (pos: Number)

  • QuadOut (pos: Number)

  • QuadInOut (pos: Number)

  • Cubic (pos: Number)

  • CubicIn (pos: Number)

  • CubicOut (pos: Number)

  • CubicInOut (pos: Number)

  • Quart (pos: Number)

  • QuartIn (pos: Number)

  • QuartOut (pos: Number)

  • QuartInOut (pos: Number)

  • Quint (pos: Number)

  • QuintIn (pos: Number)

  • QuintOut (pos: Number)

  • QuintInOut (pos: Number)

Xorshift

Noise

  • ClassicNoise (seed: Number)

    @class ClassicNoise

  • SimplexNoise (seed: Number)

    SimplexNoise

    @super ClassicNoise

  • createClassic (seed: Number)

  • createSimpleX (seed: Number)

About

Fast 2d geometry math: Vector2, Rectangle, Circle, Matrix2x3 (2D transformation), Circle, BoundingBox, Line2, Segment2, Intersections, Distances, Transitions (animation/tween), Noise, Random numbers

Resources

Stars

Watchers

Forks

Packages

No packages published

Contributors 3

  •  
  •  
  •