forked from MorvanZhou/NLP-Tutorials
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
258 lines (218 loc) · 9.03 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import numpy as np
import datetime
import os
import requests
import pandas as pd
import re
import itertools
PAD_ID = 0
class DateData:
def __init__(self, n):
np.random.seed(1)
self.date_cn = []
self.date_en = []
for timestamp in np.random.randint(143835585, 2043835585, n):
date = datetime.datetime.fromtimestamp(timestamp)
self.date_cn.append(date.strftime("%y-%m-%d"))
self.date_en.append(date.strftime("%d/%b/%Y"))
self.vocab = set(
[str(i) for i in range(0, 10)] + ["-", "/", "<GO>", "<EOS>"] + [
i.split("/")[1] for i in self.date_en])
self.v2i = {v: i for i, v in enumerate(sorted(list(self.vocab)), start=1)}
self.v2i["<PAD>"] = PAD_ID
self.vocab.add("<PAD>")
self.i2v = {i: v for v, i in self.v2i.items()}
self.x, self.y = [], []
for cn, en in zip(self.date_cn, self.date_en):
self.x.append([self.v2i[v] for v in cn])
self.y.append(
[self.v2i["<GO>"], ] + [self.v2i[v] for v in en[:3]] + [
self.v2i[en[3:6]], ] + [self.v2i[v] for v in en[6:]] + [
self.v2i["<EOS>"], ])
self.x, self.y = np.array(self.x), np.array(self.y)
self.start_token = self.v2i["<GO>"]
self.end_token = self.v2i["<EOS>"]
def sample(self, n=64):
bi = np.random.randint(0, len(self.x), size=n)
bx, by = self.x[bi], self.y[bi]
decoder_len = np.full((len(bx),), by.shape[1] - 1, dtype=np.int32)
return bx, by, decoder_len
def idx2str(self, idx):
x = []
for i in idx:
x.append(self.i2v[i])
if i == self.end_token:
break
return "".join(x)
@property
def num_word(self):
return len(self.vocab)
def pad_zero(seqs, max_len):
padded = np.full((len(seqs), max_len), fill_value=PAD_ID, dtype=np.int32)
for i, seq in enumerate(seqs):
padded[i, :len(seq)] = seq
return padded
def maybe_download_mrpc(save_dir="./MRPC/", proxy=None):
train_url = 'https://mofanpy.com/static/files/MRPC/msr_paraphrase_train.txt'
test_url = 'https://mofanpy.com/static/files/MRPC/msr_paraphrase_test.txt'
os.makedirs(save_dir, exist_ok=True)
proxies = {"http": proxy, "https": proxy}
for url in [train_url, test_url]:
raw_path = os.path.join(save_dir, url.split("/")[-1])
if not os.path.isfile(raw_path):
print("downloading from %s" % url)
r = requests.get(url, proxies=proxies)
with open(raw_path, "w", encoding="utf-8") as f:
f.write(r.text.replace('"', "<QUOTE>"))
print("completed")
def _text_standardize(text):
text = re.sub(r'—', '-', text)
text = re.sub(r'–', '-', text)
text = re.sub(r'―', '-', text)
text = re.sub(r" \d+(,\d+)?(\.\d+)? ", " <NUM> ", text)
text = re.sub(r" \d+-+?\d*", " <NUM>-", text)
return text.strip()
def _process_mrpc(dir="./MRPC", rows=None):
data = {"train": None, "test": None}
files = os.listdir(dir)
for f in files:
df = pd.read_csv(os.path.join(dir, f), sep='\t', nrows=rows)
k = "train" if "train" in f else "test"
data[k] = {"is_same": df.iloc[:, 0].values, "s1": df["#1 String"].values, "s2": df["#2 String"].values}
vocab = set()
for n in ["train", "test"]:
for m in ["s1", "s2"]:
for i in range(len(data[n][m])):
data[n][m][i] = _text_standardize(data[n][m][i].lower())
cs = data[n][m][i].split(" ")
vocab.update(set(cs))
v2i = {v: i for i, v in enumerate(sorted(vocab), start=1)}
v2i["<PAD>"] = PAD_ID
v2i["<MASK>"] = len(v2i)
v2i["<SEP>"] = len(v2i)
v2i["<GO>"] = len(v2i)
i2v = {i: v for v, i in v2i.items()}
for n in ["train", "test"]:
for m in ["s1", "s2"]:
data[n][m+"id"] = [[v2i[v] for v in c.split(" ")] for c in data[n][m]]
return data, v2i, i2v
class MRPCData:
num_seg = 3
pad_id = PAD_ID
def __init__(self, data_dir="./MRPC/", rows=None, proxy=None):
maybe_download_mrpc(save_dir=data_dir, proxy=proxy)
data, self.v2i, self.i2v = _process_mrpc(data_dir, rows)
self.max_len = max(
[len(s1) + len(s2) + 3 for s1, s2 in zip(
data["train"]["s1id"] + data["test"]["s1id"], data["train"]["s2id"] + data["test"]["s2id"])])
self.xlen = np.array([
[
len(data["train"]["s1id"][i]), len(data["train"]["s2id"][i])
] for i in range(len(data["train"]["s1id"]))], dtype=int)
x = [
[self.v2i["<GO>"]] + data["train"]["s1id"][i] + [self.v2i["<SEP>"]] + data["train"]["s2id"][i] + [self.v2i["<SEP>"]]
for i in range(len(self.xlen))
]
self.x = pad_zero(x, max_len=self.max_len)
self.nsp_y = data["train"]["is_same"][:, None]
self.seg = np.full(self.x.shape, self.num_seg-1, np.int32)
for i in range(len(x)):
si = self.xlen[i][0] + 2
self.seg[i, :si] = 0
si_ = si + self.xlen[i][1] + 1
self.seg[i, si:si_] = 1
self.word_ids = np.array(list(set(self.i2v.keys()).difference(
[self.v2i[v] for v in ["<PAD>", "<MASK>", "<SEP>"]])))
def sample(self, n):
bi = np.random.randint(0, self.x.shape[0], size=n)
bx, bs, bl, by = self.x[bi], self.seg[bi], self.xlen[bi], self.nsp_y[bi]
return bx, bs, bl, by
@property
def num_word(self):
return len(self.v2i)
@property
def mask_id(self):
return self.v2i["<MASK>"]
class MRPCSingle:
pad_id = PAD_ID
def __init__(self, data_dir="./MRPC/", rows=None, proxy=None):
maybe_download_mrpc(save_dir=data_dir, proxy=proxy)
data, self.v2i, self.i2v = _process_mrpc(data_dir, rows)
self.max_len = max([len(s) + 2 for s in data["train"]["s1id"] + data["train"]["s2id"]])
x = [
[self.v2i["<GO>"]] + data["train"]["s1id"][i] + [self.v2i["<SEP>"]]
for i in range(len(data["train"]["s1id"]))
]
x += [
[self.v2i["<GO>"]] + data["train"]["s2id"][i] + [self.v2i["<SEP>"]]
for i in range(len(data["train"]["s2id"]))
]
self.x = pad_zero(x, max_len=self.max_len)
self.word_ids = np.array(list(set(self.i2v.keys()).difference([self.v2i["<PAD>"]])))
def sample(self, n):
bi = np.random.randint(0, self.x.shape[0], size=n)
bx = self.x[bi]
return bx
@property
def num_word(self):
return len(self.v2i)
class Dataset:
def __init__(self, x, y, v2i, i2v):
self.x, self.y = x, y
self.v2i, self.i2v = v2i, i2v
self.vocab = v2i.keys()
def sample(self, n):
b_idx = np.random.randint(0, len(self.x), n)
bx, by = self.x[b_idx], self.y[b_idx]
return bx, by
@property
def num_word(self):
return len(self.v2i)
def process_w2v_data(corpus, skip_window=2, method="skip_gram"):
all_words = [sentence.split(" ") for sentence in corpus]
all_words = np.array(list(itertools.chain(*all_words)))
# vocab sort by decreasing frequency for the negative sampling below (nce_loss).
vocab, v_count = np.unique(all_words, return_counts=True)
vocab = vocab[np.argsort(v_count)[::-1]]
print("all vocabularies sorted from more frequent to less frequent:\n", vocab)
v2i = {v: i for i, v in enumerate(vocab)}
i2v = {i: v for v, i in v2i.items()}
# pair data
pairs = []
js = [i for i in range(-skip_window, skip_window + 1) if i != 0]
for c in corpus:
words = c.split(" ")
w_idx = [v2i[w] for w in words]
if method == "skip_gram":
for i in range(len(w_idx)):
for j in js:
if i + j < 0 or i + j >= len(w_idx):
continue
pairs.append((w_idx[i], w_idx[i + j])) # (center, context) or (feature, target)
elif method.lower() == "cbow":
for i in range(skip_window, len(w_idx) - skip_window):
context = []
for j in js:
context.append(w_idx[i + j])
pairs.append(context + [w_idx[i]]) # (contexts, center) or (feature, target)
else:
raise ValueError
pairs = np.array(pairs)
print("5 example pairs:\n", pairs[:5])
if method.lower() == "skip_gram":
x, y = pairs[:, 0], pairs[:, 1]
elif method.lower() == "cbow":
x, y = pairs[:, :-1], pairs[:, -1]
else:
raise ValueError
return Dataset(x, y, v2i, i2v)
def set_soft_gpu(soft_gpu):
import tensorflow as tf
if soft_gpu:
gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
# Currently, memory growth needs to be the same across GPUs
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
logical_gpus = tf.config.experimental.list_logical_devices('GPU')
print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs")