forked from nillerusr/source-engine
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuiltin_particle_ops.cpp
4584 lines (3789 loc) · 157 KB
/
builtin_particle_ops.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose: particle system code
//
//===========================================================================//
#include "tier0/platform.h"
#include "particles/particles.h"
#include "filesystem.h"
#include "tier2/tier2.h"
#include "tier2/fileutils.h"
#include "tier2/renderutils.h"
#include "tier1/UtlStringMap.h"
#include "tier1/strtools.h"
#include "studio.h"
#include "bspflags.h"
#include "tier0/vprof.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
#if MEASURE_PARTICLE_PERF
#if VPROF_LEVEL > 0
#define START_OP float flOpStartTime = Plat_FloatTime(); VPROF_ENTER_SCOPE(pOp->GetDefinition()->GetName())
#else
#define START_OP float flOpStartTime = Plat_FloatTime();
#endif
#if VPROF_LEVEL > 0
#define END_OP if ( 1 ) { \
float flETime = Plat_FloatTime() - flOpStartTime; \
IParticleOperatorDefinition *pDef = (IParticleOperatorDefinition *) pOp->GetDefinition(); \
pDef->RecordExecutionTime( flETime ); \
} \
VPROF_EXIT_SCOPE()
#else
#define END_OP if ( 1 ) { \
float flETime = Plat_FloatTime() - flOpStartTime; \
IParticleOperatorDefinition *pDef = (IParticleOperatorDefinition *) pOp->GetDefinition(); \
pDef->RecordExecutionTime( flETime ); \
}
#endif
#else
#define START_OP
#define END_OP
#endif
//-----------------------------------------------------------------------------
// Standard movement operator
//-----------------------------------------------------------------------------
class C_OP_BasicMovement : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_BasicMovement );
uint32 GetWrittenAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_PREV_XYZ_MASK | PARTICLE_ATTRIBUTE_XYZ_MASK;
}
uint32 GetReadAttributes( void ) const
{
return 0;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
Vector m_Gravity;
float m_fDrag;
int m_nMaxConstraintPasses;
};
DEFINE_PARTICLE_OPERATOR( C_OP_BasicMovement, "Movement Basic", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_BasicMovement )
DMXELEMENT_UNPACK_FIELD( "gravity", "0 0 0", Vector, m_Gravity )
DMXELEMENT_UNPACK_FIELD( "drag", "0", float, m_fDrag )
DMXELEMENT_UNPACK_FIELD( "max constraint passes", "3", int, m_nMaxConstraintPasses )
END_PARTICLE_OPERATOR_UNPACK( C_OP_BasicMovement )
#define MAXIMUM_NUMBER_OF_CONSTRAINTS 100
//#define CHECKALL 1
#ifdef NDEBUG
#define CHECKSYSTEM( p ) 0
#else
#ifdef CHECKALL
static void CHECKSYSTEM( CParticleCollection *pParticles )
{
// Assert( pParticles->m_nActiveParticles <= pParticles->m_pDef->m_nMaxParticles );
for ( int i = 0; i < pParticles->m_nActiveParticles; ++i )
{
const float *xyz = pParticles->GetFloatAttributePtr( PARTICLE_ATTRIBUTE_XYZ, i );
const float *xyz_prev = pParticles->GetFloatAttributePtr( PARTICLE_ATTRIBUTE_PREV_XYZ, i );
Assert( IsFinite( xyz[0] ) );
Assert( IsFinite( xyz[4] ) );
Assert( IsFinite( xyz[8] ) );
Assert( IsFinite( xyz_prev[0] ) );
Assert( IsFinite( xyz_prev[4] ) );
Assert( IsFinite( xyz_prev[8] ) );
}
}
#else
#define CHECKSYSTEM( p ) 0
#endif
#endif
void C_OP_BasicMovement::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
C4VAttributeWriteIterator prev_xyz( PARTICLE_ATTRIBUTE_PREV_XYZ, pParticles );
C4VAttributeWriteIterator xyz( PARTICLE_ATTRIBUTE_XYZ, pParticles );
// fltx4 adj_dt = ReplicateX4( (1.0-m_fDrag) * ( pParticles->m_flDt / pParticles->m_flPreviousDt ) );
fltx4 adj_dt = ReplicateX4( ( pParticles->m_flDt / pParticles->m_flPreviousDt ) * ExponentialDecay( (1.0f-max(0.f,m_fDrag)), (1.0f/30.0f), pParticles->m_flDt ) );
size_t nForceStride=0;
Vector acc = m_Gravity;
fltx4 accFactorX = ReplicateX4( acc.x );
fltx4 accFactorY = ReplicateX4( acc.y );
fltx4 accFactorZ = ReplicateX4( acc.z );
int nAccumulators = pParticles->m_pDef->m_ForceGenerators.Count();
FourVectors PerParticleForceAccumulator[MAX_PARTICLES_IN_A_SYSTEM / 4]; // xbox fixme - memory
FourVectors *pAccOut = PerParticleForceAccumulator;
if (nAccumulators)
{
// we do have per particle force accumulators
nForceStride = 1;
int nblocks = pParticles->m_nPaddedActiveParticles;
for(int i=0;i<nblocks;i++)
{
pAccOut->x = accFactorX;
pAccOut->y = accFactorY;
pAccOut->z = accFactorZ;
pAccOut++;
}
// now, call all force accumulators
for(int i=0;i < nAccumulators ; i++ )
{
float flStrengthOp;
CParticleOperatorInstance *pOp = pParticles->m_pDef->m_ForceGenerators[i];
if ( pParticles->CheckIfOperatorShouldRun( pOp, &flStrengthOp ))
{
START_OP;
pParticles->m_pDef->m_ForceGenerators[i]->AddForces(
PerParticleForceAccumulator,
pParticles,
nblocks,
flStrengthOp,
pParticles->m_pOperatorContextData +
pParticles->m_pDef->m_nForceGeneratorsCtxOffsets[i] );
END_OP;
}
}
}
else
{
pAccOut->x = accFactorX;
pAccOut->y = accFactorY;
pAccOut->z = accFactorZ;
// we just have gravity
}
CHECKSYSTEM( pParticles );
fltx4 DtSquared = ReplicateX4( pParticles->m_flDt * pParticles->m_flDt );
int ctr = pParticles->m_nPaddedActiveParticles;
FourVectors *pAccIn = PerParticleForceAccumulator;
do
{
accFactorX = MulSIMD( pAccIn->x, DtSquared );
accFactorY = MulSIMD( pAccIn->y, DtSquared );
accFactorZ = MulSIMD( pAccIn->z, DtSquared );
// we will write prev xyz, and swap prev and cur at the end
prev_xyz->x = AddSIMD( xyz->x,
AddSIMD( accFactorX, MulSIMD( adj_dt, SubSIMD( xyz->x, prev_xyz->x ) ) ) );
prev_xyz->y = AddSIMD( xyz->y,
AddSIMD( accFactorY, MulSIMD( adj_dt, SubSIMD( xyz->y, prev_xyz->y ) ) ) );
prev_xyz->z = AddSIMD( xyz->z,
AddSIMD( accFactorZ, MulSIMD( adj_dt, SubSIMD( xyz->z, prev_xyz->z ) ) ) );
CHECKSYSTEM( pParticles );
++prev_xyz;
++xyz;
pAccIn += nForceStride;
} while (--ctr);
CHECKSYSTEM( pParticles );
pParticles->SwapPosAndPrevPos();
// now, enforce constraints
int nConstraints = pParticles->m_pDef->m_Constraints.Count();
if ( nConstraints && pParticles->m_nPaddedActiveParticles )
{
bool bConstraintSatisfied[ MAXIMUM_NUMBER_OF_CONSTRAINTS ];
bool bFinalConstraint[ MAXIMUM_NUMBER_OF_CONSTRAINTS ];
for(int i=0;i<nConstraints; i++)
{
bFinalConstraint[i] = pParticles->m_pDef->m_Constraints[i]->IsFinalConstraint();
bConstraintSatisfied[i] = false;
pParticles->m_pDef->m_Constraints[i]->SetupConstraintPerFrameData(
pParticles, pParticles->m_pOperatorContextData +
pParticles->m_pDef->m_nConstraintsCtxOffsets[i] );
}
// constraints get to see their own per psystem per op random #s
for(int p=0; p < m_nMaxConstraintPasses ; p++ )
{
// int nSaveOffset=pParticles->m_nOperatorRandomSampleOffset;
for(int i=0;i<nConstraints; i++)
{
// pParticles->m_nOperatorRandomSampleOffset += 23;
if ( ! bConstraintSatisfied[i] )
{
CParticleOperatorInstance *pOp = pParticles->m_pDef->m_Constraints[i];
bConstraintSatisfied[i] = true;
if ( ( !bFinalConstraint[i] ) && ( pParticles->CheckIfOperatorShouldRun( pOp ) ) )
{
START_OP;
bool bDidSomething = pOp->EnforceConstraint(
0, pParticles->m_nPaddedActiveParticles, pParticles,
pParticles->m_pOperatorContextData +
pParticles->m_pDef->m_nConstraintsCtxOffsets[i],
pParticles->m_nActiveParticles );
END_OP;
CHECKSYSTEM( pParticles );
if ( bDidSomething )
{
// other constraints now not satisfied, maybe
for( int j=0; j<nConstraints; j++)
{
if ( i != j )
{
bConstraintSatisfied[ j ] = false;
}
}
}
}
}
}
// pParticles->m_nOperatorRandomSampleOffset = nSaveOffset;
}
// now, run final constraints
for(int i=0;i<nConstraints; i++)
{
CParticleOperatorInstance *pOp = pParticles->m_pDef->m_Constraints[i];
if ( ( bFinalConstraint[i] ) &&
( pParticles->CheckIfOperatorShouldRun(
pOp ) ) )
{
START_OP;
pOp->EnforceConstraint(
0, pParticles->m_nPaddedActiveParticles, pParticles,
pParticles->m_pOperatorContextData +
pParticles->m_pDef->m_nConstraintsCtxOffsets[i],
pParticles->m_nActiveParticles );
END_OP;
CHECKSYSTEM( pParticles );
}
}
}
CHECKSYSTEM( pParticles );
}
//-----------------------------------------------------------------------------
// Fade and kill operator
//-----------------------------------------------------------------------------
class C_OP_FadeAndKill : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_FadeAndKill );
uint32 GetWrittenAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_ALPHA_MASK;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_CREATION_TIME_MASK | PARTICLE_ATTRIBUTE_LIFE_DURATION_MASK;
}
uint32 GetReadInitialAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_ALPHA_MASK;
}
virtual void InitParams( CParticleSystemDefinition *pDef, CDmxElement *pElement );
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
float m_flStartFadeInTime;
float m_flEndFadeInTime;
float m_flStartFadeOutTime;
float m_flEndFadeOutTime;
float m_flStartAlpha;
float m_flEndAlpha;
};
DEFINE_PARTICLE_OPERATOR( C_OP_FadeAndKill, "Alpha Fade and Decay", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_FadeAndKill )
DMXELEMENT_UNPACK_FIELD( "start_alpha","1", float, m_flStartAlpha )
DMXELEMENT_UNPACK_FIELD( "end_alpha","0", float, m_flEndAlpha )
DMXELEMENT_UNPACK_FIELD( "start_fade_in_time","0", float, m_flStartFadeInTime )
DMXELEMENT_UNPACK_FIELD( "end_fade_in_time","0.5", float, m_flEndFadeInTime )
DMXELEMENT_UNPACK_FIELD( "start_fade_out_time","0.5", float, m_flStartFadeOutTime )
DMXELEMENT_UNPACK_FIELD( "end_fade_out_time","1", float, m_flEndFadeOutTime )
END_PARTICLE_OPERATOR_UNPACK( C_OP_FadeAndKill )
void C_OP_FadeAndKill::InitParams( CParticleSystemDefinition *pDef, CDmxElement *pElement )
{
// Cache off and validate values
if ( m_flEndFadeInTime < m_flStartFadeInTime )
{
m_flEndFadeInTime = m_flStartFadeInTime;
}
if ( m_flEndFadeOutTime < m_flStartFadeOutTime )
{
m_flEndFadeOutTime = m_flStartFadeOutTime;
}
if ( m_flStartFadeOutTime < m_flStartFadeInTime )
{
V_swap( m_flStartFadeInTime, m_flStartFadeOutTime );
}
if ( m_flEndFadeOutTime < m_flEndFadeInTime )
{
V_swap( m_flEndFadeInTime, m_flEndFadeOutTime );
}
}
void C_OP_FadeAndKill::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
CM128AttributeIterator pCreationTime( PARTICLE_ATTRIBUTE_CREATION_TIME, pParticles );
CM128AttributeIterator pLifeDuration( PARTICLE_ATTRIBUTE_LIFE_DURATION, pParticles );
CM128InitialAttributeIterator pInitialAlpha( PARTICLE_ATTRIBUTE_ALPHA, pParticles );
CM128AttributeWriteIterator pAlpha( PARTICLE_ATTRIBUTE_ALPHA, pParticles );
fltx4 fl4StartFadeInTime = ReplicateX4( m_flStartFadeInTime );
fltx4 fl4StartFadeOutTime = ReplicateX4( m_flStartFadeOutTime );
fltx4 fl4EndFadeInTime = ReplicateX4( m_flEndFadeInTime );
fltx4 fl4EndFadeOutTime = ReplicateX4( m_flEndFadeOutTime );
fltx4 fl4EndAlpha = ReplicateX4( m_flEndAlpha );
fltx4 fl4StartAlpha = ReplicateX4( m_flStartAlpha );
fltx4 fl4CurTime = pParticles->m_fl4CurTime;
int nLimit = pParticles->m_nPaddedActiveParticles << 2;
fltx4 fl4FadeInDuration = ReplicateX4( m_flEndFadeInTime - m_flStartFadeInTime );
fltx4 fl4OOFadeInDuration = ReciprocalEstSIMD( fl4FadeInDuration );
fltx4 fl4FadeOutDuration = ReplicateX4( m_flEndFadeOutTime - m_flStartFadeOutTime );
fltx4 fl4OOFadeOutDuration = ReciprocalEstSIMD( fl4FadeOutDuration );
for ( int i = 0; i < nLimit; i+= 4 )
{
fltx4 fl4Age = SubSIMD( fl4CurTime, *pCreationTime );
fltx4 fl4ParticleLifeTime = *pLifeDuration;
fltx4 fl4KillMask = CmpGeSIMD( fl4Age, *pLifeDuration ); // takes care of lifeduration = 0 div 0
fl4Age = MulSIMD( fl4Age, ReciprocalEstSIMD( fl4ParticleLifeTime ) ); // age 0..1
fltx4 fl4FadingInMask = AndNotSIMD( fl4KillMask,
AndSIMD(
CmpLeSIMD( fl4StartFadeInTime, fl4Age ), CmpGtSIMD(fl4EndFadeInTime, fl4Age ) ) );
fltx4 fl4FadingOutMask = AndNotSIMD( fl4KillMask,
AndSIMD(
CmpLeSIMD( fl4StartFadeOutTime, fl4Age ), CmpGtSIMD(fl4EndFadeOutTime, fl4Age ) ) );
if ( IsAnyNegative( fl4FadingInMask ) )
{
fltx4 fl4Goal = MulSIMD( *pInitialAlpha, fl4StartAlpha );
fltx4 fl4NewAlpha = SimpleSplineRemapValWithDeltasClamped( fl4Age, fl4StartFadeInTime, fl4FadeInDuration, fl4OOFadeInDuration,
fl4Goal, SubSIMD( *pInitialAlpha, fl4Goal ) );
*pAlpha = MaskedAssign( fl4FadingInMask, fl4NewAlpha, *pAlpha );
}
if ( IsAnyNegative( fl4FadingOutMask ) )
{
fltx4 fl4Goal = MulSIMD( *pInitialAlpha, fl4EndAlpha );
fltx4 fl4NewAlpha = SimpleSplineRemapValWithDeltasClamped( fl4Age, fl4StartFadeOutTime, fl4FadeOutDuration, fl4OOFadeOutDuration,
*pInitialAlpha, SubSIMD( fl4Goal, *pInitialAlpha ) );
*pAlpha = MaskedAssign( fl4FadingOutMask, fl4NewAlpha, *pAlpha );
}
if ( IsAnyNegative( fl4KillMask ) )
{
int nMask = TestSignSIMD( fl4KillMask );
if ( nMask & 1 )
pParticles->KillParticle( i );
if ( nMask & 2 )
pParticles->KillParticle( i + 1 );
if ( nMask & 4 )
pParticles->KillParticle( i + 2 );
if ( nMask & 8 )
pParticles->KillParticle( i + 3 );
}
++pCreationTime;
++pLifeDuration;
++pInitialAlpha;
++pAlpha;
}
}
//-----------------------------------------------------------------------------
// Fade In Operator
//-----------------------------------------------------------------------------
class C_OP_FadeIn : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_FadeIn );
uint32 GetWrittenAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_ALPHA_MASK;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_CREATION_TIME_MASK | PARTICLE_ATTRIBUTE_LIFE_DURATION_MASK | PARTICLE_ATTRIBUTE_PARTICLE_ID_MASK;
}
uint32 GetReadInitialAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_ALPHA_MASK;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
float m_flFadeInTimeMin;
float m_flFadeInTimeMax;
float m_flFadeInTimeExp;
bool m_bProportional;
};
DEFINE_PARTICLE_OPERATOR( C_OP_FadeIn, "Alpha Fade In Random", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_FadeIn )
DMXELEMENT_UNPACK_FIELD( "fade in time min",".25", float, m_flFadeInTimeMin )
DMXELEMENT_UNPACK_FIELD( "fade in time max",".25", float, m_flFadeInTimeMax )
DMXELEMENT_UNPACK_FIELD( "fade in time exponent","1", float, m_flFadeInTimeExp )
DMXELEMENT_UNPACK_FIELD( "proportional 0/1","1", bool, m_bProportional )
END_PARTICLE_OPERATOR_UNPACK( C_OP_FadeIn )
void C_OP_FadeIn::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
CM128AttributeIterator pCreationTime( PARTICLE_ATTRIBUTE_CREATION_TIME, pParticles );
CM128AttributeIterator pLifeDuration( PARTICLE_ATTRIBUTE_LIFE_DURATION, pParticles );
CM128InitialAttributeIterator pInitialAlpha( PARTICLE_ATTRIBUTE_ALPHA, pParticles );
CM128AttributeWriteIterator pAlpha( PARTICLE_ATTRIBUTE_ALPHA, pParticles );
C4IAttributeIterator pParticleID( PARTICLE_ATTRIBUTE_PARTICLE_ID, pParticles );
int nRandomOffset = pParticles->OperatorRandomSampleOffset();
fltx4 CurTime = pParticles->m_fl4CurTime;
int nCtr = pParticles->m_nPaddedActiveParticles;
int nSSEFixedExponent = m_flFadeInTimeExp*4.0;
fltx4 FadeTimeMin = ReplicateX4( m_flFadeInTimeMin );
fltx4 FadeTimeWidth = ReplicateX4( m_flFadeInTimeMax - m_flFadeInTimeMin );
do
{
fltx4 FadeInTime= Pow_FixedPoint_Exponent_SIMD(
pParticles->RandomFloat( *pParticleID, nRandomOffset ),
nSSEFixedExponent);
FadeInTime = AddSIMD( FadeTimeMin, MulSIMD( FadeTimeWidth, FadeInTime ) );
// Find our life percentage
fltx4 flLifeTime = SubSIMD( CurTime, *pCreationTime );
if ( m_bProportional )
{
flLifeTime =
MaxSIMD( Four_Zeros,
MinSIMD( Four_Ones,
MulSIMD( flLifeTime, ReciprocalEstSIMD( *pLifeDuration ) ) ) );
}
fltx4 ApplyMask = CmpGtSIMD( FadeInTime, flLifeTime );
if ( IsAnyNegative( ApplyMask ) )
{
// Fading in
fltx4 NewAlpha =
SimpleSplineRemapValWithDeltasClamped(
flLifeTime, Four_Zeros,
FadeInTime, ReciprocalEstSIMD( FadeInTime ),
Four_Zeros, *pInitialAlpha );
*( pAlpha ) = MaskedAssign( ApplyMask, NewAlpha, *( pAlpha ) );
}
++pCreationTime;
++pLifeDuration;
++pInitialAlpha;
++pAlpha;
++pParticleID;
} while( --nCtr );
}
//-----------------------------------------------------------------------------
// Fade Out Operator
//-----------------------------------------------------------------------------
class C_OP_FadeOut : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_FadeOut );
uint32 GetWrittenAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_ALPHA_MASK;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_CREATION_TIME_MASK | PARTICLE_ATTRIBUTE_LIFE_DURATION_MASK | PARTICLE_ATTRIBUTE_PARTICLE_ID_MASK;
}
uint32 GetReadInitialAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_ALPHA_MASK;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
void InitParams( CParticleSystemDefinition *pDef, CDmxElement *pElement )
{
float flBias = ( m_flFadeBias != 0.0f ) ? m_flFadeBias : 0.5f;
m_fl4BiasParam = PreCalcBiasParameter( ReplicateX4( flBias ) );
if ( m_flFadeOutTimeMin == 0.0f && m_flFadeOutTimeMax == 0.0f )
{
m_flFadeOutTimeMin = m_flFadeOutTimeMax = FLT_EPSILON;
}
}
float m_flFadeOutTimeMin;
float m_flFadeOutTimeMax;
float m_flFadeOutTimeExp;
float m_flFadeBias;
fltx4 m_fl4BiasParam;
bool m_bProportional;
bool m_bEaseInAndOut;
};
DEFINE_PARTICLE_OPERATOR( C_OP_FadeOut, "Alpha Fade Out Random", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_FadeOut )
DMXELEMENT_UNPACK_FIELD( "fade out time min",".25", float, m_flFadeOutTimeMin )
DMXELEMENT_UNPACK_FIELD( "fade out time max",".25", float, m_flFadeOutTimeMax )
DMXELEMENT_UNPACK_FIELD( "fade out time exponent","1", float, m_flFadeOutTimeExp )
DMXELEMENT_UNPACK_FIELD( "proportional 0/1","1", bool, m_bProportional )
DMXELEMENT_UNPACK_FIELD( "ease in and out","1", bool, m_bEaseInAndOut )
DMXELEMENT_UNPACK_FIELD( "fade bias", "0.5", float, m_flFadeBias )
END_PARTICLE_OPERATOR_UNPACK( C_OP_FadeOut )
void C_OP_FadeOut::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
CM128AttributeIterator pCreationTime( PARTICLE_ATTRIBUTE_CREATION_TIME, pParticles );
CM128AttributeIterator pLifeDuration( PARTICLE_ATTRIBUTE_LIFE_DURATION, pParticles );
CM128InitialAttributeIterator pInitialAlpha( PARTICLE_ATTRIBUTE_ALPHA, pParticles );
CM128AttributeWriteIterator pAlpha( PARTICLE_ATTRIBUTE_ALPHA, pParticles );
C4IAttributeIterator pParticleID( PARTICLE_ATTRIBUTE_PARTICLE_ID, pParticles );
int nRandomOffset = pParticles->OperatorRandomSampleOffset();
fltx4 fl4CurTime = pParticles->m_fl4CurTime;
int nCtr = pParticles->m_nPaddedActiveParticles;
int nSSEFixedExponent = m_flFadeOutTimeExp*4.0;
fltx4 FadeTimeMin = ReplicateX4( m_flFadeOutTimeMin );
fltx4 FadeTimeWidth = ReplicateX4( m_flFadeOutTimeMax - m_flFadeOutTimeMin );
do
{
fltx4 fl4FadeOutTime = Pow_FixedPoint_Exponent_SIMD(
pParticles->RandomFloat( *pParticleID, nRandomOffset ),
nSSEFixedExponent );
fl4FadeOutTime = AddSIMD( FadeTimeMin, MulSIMD( FadeTimeWidth, fl4FadeOutTime ) );
fltx4 fl4Lifespan;
// Find our life percentage
fltx4 fl4LifeTime = SubSIMD( fl4CurTime, *pCreationTime );
fltx4 fl4LifeDuration = *pLifeDuration;
if ( m_bProportional )
{
fl4LifeTime = MulSIMD( fl4LifeTime, ReciprocalEstSIMD( fl4LifeDuration ) );
fl4FadeOutTime = SubSIMD( Four_Ones, fl4FadeOutTime );
fl4Lifespan = SubSIMD ( Four_Ones, fl4FadeOutTime );
}
else
{
fl4FadeOutTime = SubSIMD( *pLifeDuration, fl4FadeOutTime );
fl4Lifespan = SubSIMD( *pLifeDuration, fl4FadeOutTime ) ;
}
fltx4 ApplyMask = CmpLtSIMD( fl4FadeOutTime, fl4LifeTime );
if ( IsAnyNegative( ApplyMask ) )
{
// Fading out
fltx4 NewAlpha;
if ( m_bEaseInAndOut )
{
NewAlpha = SimpleSplineRemapValWithDeltasClamped(
fl4LifeTime, fl4FadeOutTime,
fl4Lifespan, ReciprocalEstSIMD( fl4Lifespan ),
*pInitialAlpha, SubSIMD ( Four_Zeros, *pInitialAlpha ) );
NewAlpha = MaxSIMD( Four_Zeros, NewAlpha );
}
else
{
fltx4 fl4Frac = MulSIMD( SubSIMD( fl4LifeTime, fl4FadeOutTime ), ReciprocalEstSIMD( fl4Lifespan ) );
fl4Frac = MinSIMD( Four_Ones, MaxSIMD( Four_Zeros, fl4Frac ) );
fl4Frac = BiasSIMD( fl4Frac, m_fl4BiasParam );
fl4Frac = SubSIMD( Four_Ones, fl4Frac );
NewAlpha = MulSIMD( *pInitialAlpha, fl4Frac );
}
*( pAlpha ) = MaskedAssign( ApplyMask, NewAlpha, *( pAlpha ) );
}
++pCreationTime;
++pLifeDuration;
++pInitialAlpha;
++pAlpha;
++pParticleID;
} while( --nCtr );
}
//-----------------------------------------------------------------------------
// Oscillating Scalar operator
// performs an oscillation operation on any scalar (fade, radius, etc.)
//-----------------------------------------------------------------------------
class C_OP_OscillateScalar : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_OscillateScalar );
uint32 GetWrittenAttributes( void ) const
{
return 1 << m_nField;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_CREATION_TIME_MASK | PARTICLE_ATTRIBUTE_LIFE_DURATION_MASK |
PARTICLE_ATTRIBUTE_PARTICLE_ID_MASK;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
float m_RateMin;
float m_RateMax;
float m_FrequencyMin;
float m_FrequencyMax;
int m_nField;
bool m_bProportional, m_bProportionalOp;
float m_flStartTime_min;
float m_flStartTime_max;
float m_flEndTime_min;
float m_flEndTime_max;
float m_flOscMult;
float m_flOscAdd;
};
DEFINE_PARTICLE_OPERATOR( C_OP_OscillateScalar, "Oscillate Scalar", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_OscillateScalar )
DMXELEMENT_UNPACK_FIELD_USERDATA( "oscillation field", "7", int, m_nField, "intchoice particlefield_scalar" )
DMXELEMENT_UNPACK_FIELD( "oscillation rate min", "0", float, m_RateMin )
DMXELEMENT_UNPACK_FIELD( "oscillation rate max", "0", float, m_RateMax )
DMXELEMENT_UNPACK_FIELD( "oscillation frequency min", "1", float, m_FrequencyMin )
DMXELEMENT_UNPACK_FIELD( "oscillation frequency max", "1", float, m_FrequencyMax )
DMXELEMENT_UNPACK_FIELD( "proportional 0/1", "1", bool, m_bProportional )
DMXELEMENT_UNPACK_FIELD( "start time min", "0", float, m_flStartTime_min )
DMXELEMENT_UNPACK_FIELD( "start time max", "0", float, m_flStartTime_max )
DMXELEMENT_UNPACK_FIELD( "end time min", "1", float, m_flEndTime_min )
DMXELEMENT_UNPACK_FIELD( "end time max", "1", float, m_flEndTime_max )
DMXELEMENT_UNPACK_FIELD( "start/end proportional", "1", bool, m_bProportionalOp )
DMXELEMENT_UNPACK_FIELD( "oscillation multiplier", "2", float, m_flOscMult )
DMXELEMENT_UNPACK_FIELD( "oscillation start phase", ".5", float, m_flOscAdd )
END_PARTICLE_OPERATOR_UNPACK( C_OP_OscillateScalar )
void C_OP_OscillateScalar::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
CM128AttributeIterator pCreationTime( PARTICLE_ATTRIBUTE_CREATION_TIME, pParticles );
CM128AttributeIterator pLifeDuration( PARTICLE_ATTRIBUTE_LIFE_DURATION, pParticles );
C4IAttributeIterator pParticleId ( PARTICLE_ATTRIBUTE_PARTICLE_ID, pParticles );
CM128AttributeWriteIterator pOscField ( m_nField, pParticles) ;
fltx4 fl4CurTime = pParticles->m_fl4CurTime;
int nRandomOffset = pParticles->OperatorRandomSampleOffset();
fltx4 fl4OscVal;
fltx4 fl4ScaleFactor = ReplicateX4( flStrength * pParticles->m_flDt );
fltx4 fl4CosFactorMultiplier = ReplicateX4( m_flOscMult );
fltx4 fl4CosFactorAdd = ReplicateX4( m_flOscAdd );
fltx4 fl4CosFactor = AddSIMD( MulSIMD( fl4CosFactorMultiplier, fl4CurTime ), fl4CosFactorAdd );
fltx4 fl4CosFactorProp = fl4CosFactorMultiplier;
fltx4 fl4StartTimeMin = ReplicateX4( m_flStartTime_min );
fltx4 fl4StartTimeWidth = ReplicateX4( m_flStartTime_max - m_flStartTime_min );
fltx4 fl4EndTimeMin = ReplicateX4( m_flEndTime_min );
fltx4 fl4EndTimeWidth = ReplicateX4( m_flEndTime_max - m_flEndTime_min );
fltx4 fl4FrequencyMin = ReplicateX4( m_FrequencyMin );
fltx4 fl4FrequencyWidth = ReplicateX4( m_FrequencyMax - m_FrequencyMin );
fltx4 fl4RateMin = ReplicateX4( m_RateMin );
fltx4 fl4RateWidth = ReplicateX4( m_RateMax - m_RateMin );
int nCtr = pParticles->m_nPaddedActiveParticles;
do
{
fltx4 fl4LifeDuration = *pLifeDuration;
fltx4 fl4GoodMask = CmpGtSIMD( fl4LifeDuration, Four_Zeros );
fltx4 fl4LifeTime;
if ( m_bProportionalOp )
{
fl4LifeTime = MulSIMD( SubSIMD( fl4CurTime, *pCreationTime ), ReciprocalEstSIMD( fl4LifeDuration ) ); // maybe need accurate div here?
}
else
{
fl4LifeTime = SubSIMD( fl4CurTime, *pCreationTime );
}
fltx4 fl4StartTime= pParticles->RandomFloat( *pParticleId, nRandomOffset + 11);
fl4StartTime = AddSIMD( fl4StartTimeMin, MulSIMD( fl4StartTimeWidth, fl4StartTime ) );
fltx4 fl4EndTime= pParticles->RandomFloat( *pParticleId, nRandomOffset + 12);
fl4EndTime = AddSIMD( fl4EndTimeMin, MulSIMD( fl4EndTimeWidth, fl4EndTime ) );
fl4GoodMask = AndSIMD( fl4GoodMask, CmpGeSIMD( fl4LifeTime, fl4StartTime ) );
fl4GoodMask = AndSIMD( fl4GoodMask, CmpLtSIMD( fl4LifeTime, fl4EndTime ) );
if ( IsAnyNegative( fl4GoodMask ) )
{
fltx4 fl4Frequency = pParticles->RandomFloat( *pParticleId, nRandomOffset );
fl4Frequency = AddSIMD( fl4FrequencyMin, MulSIMD( fl4FrequencyWidth, fl4Frequency ) );
fltx4 fl4Rate= pParticles->RandomFloat( *pParticleId, nRandomOffset + 1);
fl4Rate = AddSIMD( fl4RateMin, MulSIMD( fl4RateWidth, fl4Rate ) );
fltx4 fl4Cos;
if ( m_bProportional )
{
fl4LifeTime = MulSIMD( SubSIMD( fl4CurTime, *pCreationTime ), ReciprocalEstSIMD( fl4LifeDuration ) );
fl4Cos = AddSIMD( MulSIMD( fl4CosFactorProp, MulSIMD( fl4LifeTime, fl4Frequency )), fl4CosFactorAdd );
}
else
{
fl4Cos = MulSIMD( fl4CosFactor, fl4Frequency );
}
fltx4 fl4OscMultiplier = MulSIMD( fl4Rate, fl4ScaleFactor);
fl4OscVal = AddSIMD ( *pOscField, MulSIMD ( fl4OscMultiplier, SinEst01SIMD( fl4Cos ) ) );
if ( m_nField == 7)
{
*pOscField = MaskedAssign( fl4GoodMask,
MaxSIMD( MinSIMD( fl4OscVal, Four_Ones), Four_Zeros ), *pOscField );
}
else
{
*pOscField = MaskedAssign( fl4GoodMask, fl4OscVal, *pOscField );
}
}
++pCreationTime;
++pLifeDuration;
++pOscField;
++pParticleId;
} while (--nCtr );
};
//-----------------------------------------------------------------------------
// Oscillating Vector operator
// performs an oscillation operation on any vector (location, tint)
//-----------------------------------------------------------------------------
class C_OP_OscillateVector : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_OscillateVector );
uint32 GetWrittenAttributes( void ) const
{
return 1 << m_nField;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_CREATION_TIME_MASK | PARTICLE_ATTRIBUTE_LIFE_DURATION_MASK |
PARTICLE_ATTRIBUTE_PARTICLE_ID_MASK;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
Vector m_RateMin;
Vector m_RateMax;
Vector m_FrequencyMin;
Vector m_FrequencyMax;
int m_nField;
bool m_bProportional, m_bProportionalOp;
bool m_bAccelerator;
float m_flStartTime_min;
float m_flStartTime_max;
float m_flEndTime_min;
float m_flEndTime_max;
float m_flOscMult;
float m_flOscAdd;
};
DEFINE_PARTICLE_OPERATOR( C_OP_OscillateVector, "Oscillate Vector", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_OscillateVector )
DMXELEMENT_UNPACK_FIELD_USERDATA( "oscillation field", "0", int, m_nField, "intchoice particlefield_vector" )
DMXELEMENT_UNPACK_FIELD( "oscillation rate min", "0 0 0", Vector, m_RateMin )
DMXELEMENT_UNPACK_FIELD( "oscillation rate max", "0 0 0", Vector, m_RateMax )
DMXELEMENT_UNPACK_FIELD( "oscillation frequency min", "1 1 1", Vector, m_FrequencyMin )
DMXELEMENT_UNPACK_FIELD( "oscillation frequency max", "1 1 1", Vector, m_FrequencyMax )
DMXELEMENT_UNPACK_FIELD( "proportional 0/1", "1", bool, m_bProportional )
DMXELEMENT_UNPACK_FIELD( "start time min", "0", float, m_flStartTime_min )
DMXELEMENT_UNPACK_FIELD( "start time max", "0", float, m_flStartTime_max )
DMXELEMENT_UNPACK_FIELD( "end time min", "1", float, m_flEndTime_min )
DMXELEMENT_UNPACK_FIELD( "end time max", "1", float, m_flEndTime_max )
DMXELEMENT_UNPACK_FIELD( "start/end proportional", "1", bool, m_bProportionalOp )
DMXELEMENT_UNPACK_FIELD( "oscillation multiplier", "2", float, m_flOscMult )
DMXELEMENT_UNPACK_FIELD( "oscillation start phase", ".5", float, m_flOscAdd )
END_PARTICLE_OPERATOR_UNPACK( C_OP_OscillateVector )
void C_OP_OscillateVector::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
CM128AttributeIterator pCreationTime( PARTICLE_ATTRIBUTE_CREATION_TIME, pParticles );
CM128AttributeIterator pLifeDuration( PARTICLE_ATTRIBUTE_LIFE_DURATION, pParticles );
C4IAttributeIterator pParticleId ( PARTICLE_ATTRIBUTE_PARTICLE_ID, pParticles );
C4VAttributeWriteIterator pOscField ( m_nField, pParticles) ;
fltx4 fl4CurTime = pParticles->m_fl4CurTime;
int nRandomOffset = pParticles->OperatorRandomSampleOffset();
FourVectors fvOscVal;
fltx4 fl4ScaleFactor = ReplicateX4( flStrength * pParticles->m_flDt );
fltx4 fl4CosFactorMultiplier = ReplicateX4( m_flOscMult );
fltx4 fl4CosFactorAdd = ReplicateX4( m_flOscAdd );
fltx4 fl4CosFactor = AddSIMD( MulSIMD( fl4CosFactorMultiplier, fl4CurTime ), fl4CosFactorAdd );
fltx4 fl4CosFactorProp = fl4CosFactorMultiplier;
fltx4 fl4StartTimeMin = ReplicateX4( m_flStartTime_min );
fltx4 fl4StartTimeWidth = ReplicateX4( m_flStartTime_max - m_flStartTime_min );
fltx4 fl4EndTimeMin = ReplicateX4( m_flEndTime_min );
fltx4 fl4EndTimeWidth = ReplicateX4( m_flEndTime_max - m_flEndTime_min );
FourVectors fvFrequencyMin;
fvFrequencyMin.DuplicateVector( m_FrequencyMin );
FourVectors fvFrequencyWidth;
fvFrequencyWidth.DuplicateVector( m_FrequencyMax - m_FrequencyMin );
FourVectors fvRateMin;
fvRateMin.DuplicateVector( m_RateMin );
FourVectors fvRateWidth;
fvRateWidth.DuplicateVector( m_RateMax - m_RateMin );
int nCtr = pParticles->m_nPaddedActiveParticles;
do
{
fltx4 fl4LifeDuration = *pLifeDuration;
fltx4 fl4GoodMask = CmpGtSIMD( fl4LifeDuration, Four_Zeros );
fltx4 fl4LifeTime;
if ( m_bProportionalOp )
{
fl4LifeTime = MulSIMD( SubSIMD( fl4CurTime, *pCreationTime ), ReciprocalEstSIMD( fl4LifeDuration ) ); // maybe need accurate div here?
}
else
{
fl4LifeTime = SubSIMD( fl4CurTime, *pCreationTime );
}
fltx4 fl4StartTime= pParticles->RandomFloat( *pParticleId, nRandomOffset + 11);
fl4StartTime = AddSIMD( fl4StartTimeMin, MulSIMD( fl4StartTimeWidth, fl4StartTime ) );
fltx4 fl4EndTime= pParticles->RandomFloat( *pParticleId, nRandomOffset + 12);
fl4EndTime = AddSIMD( fl4EndTimeMin, MulSIMD( fl4EndTimeWidth, fl4EndTime ) );
fl4GoodMask = AndSIMD( fl4GoodMask, CmpGeSIMD( fl4LifeTime, fl4StartTime ) );
fl4GoodMask = AndSIMD( fl4GoodMask, CmpLtSIMD( fl4LifeTime, fl4EndTime ) );
if ( IsAnyNegative( fl4GoodMask ) )
{
FourVectors fvFrequency;
fvFrequency.x = pParticles->RandomFloat( *pParticleId, nRandomOffset + 8 );
fvFrequency.y = pParticles->RandomFloat( *pParticleId, nRandomOffset + 12 );
fvFrequency.z = pParticles->RandomFloat( *pParticleId, nRandomOffset + 15 );
fvFrequency.VProduct( fvFrequencyWidth );
fvFrequency += fvFrequencyMin;
FourVectors fvRate;
fvRate.x = pParticles->RandomFloat( *pParticleId, nRandomOffset + 3);
fvRate.y = pParticles->RandomFloat( *pParticleId, nRandomOffset + 7);
fvRate.z = pParticles->RandomFloat( *pParticleId, nRandomOffset + 9);
//fvRate = AddSIMD( fvRateMin, MulSIMD( fvRateWidth, fvRate ) );
fvRate.VProduct( fvRateWidth );
fvRate += fvRateMin;
FourVectors fvCos;
if ( m_bProportional )
{
fl4LifeTime = MulSIMD( SubSIMD( fl4CurTime, *pCreationTime ), ReciprocalEstSIMD( fl4LifeDuration ) );
fvCos.x = AddSIMD( MulSIMD( fl4CosFactorProp, MulSIMD( fvFrequency.x, fl4LifeTime )), fl4CosFactorAdd );
fvCos.y = AddSIMD( MulSIMD( fl4CosFactorProp, MulSIMD( fvFrequency.y, fl4LifeTime )), fl4CosFactorAdd );
fvCos.z = AddSIMD( MulSIMD( fl4CosFactorProp, MulSIMD( fvFrequency.z, fl4LifeTime )), fl4CosFactorAdd );
}
else
{
//fvCos = MulSIMD( fl4CosFactor, fvFrequency );
fvCos.x = MulSIMD( fvFrequency.x, fl4CosFactor );
fvCos.y = MulSIMD( fvFrequency.y, fl4CosFactor );
fvCos.z = MulSIMD( fvFrequency.z, fl4CosFactor );
}
FourVectors fvOscMultiplier;
fvOscMultiplier.x = MulSIMD( fvRate.x, fl4ScaleFactor);
fvOscMultiplier.y = MulSIMD( fvRate.y, fl4ScaleFactor);
fvOscMultiplier.z = MulSIMD( fvRate.z, fl4ScaleFactor);
FourVectors fvOutput = *pOscField;
fvOscVal.x = AddSIMD ( fvOutput.x, MulSIMD ( fvOscMultiplier.x, SinEst01SIMD( fvCos.x ) ) );
fvOscVal.y = AddSIMD ( fvOutput.y, MulSIMD ( fvOscMultiplier.y, SinEst01SIMD( fvCos.y ) ) );
fvOscVal.z = AddSIMD ( fvOutput.z, MulSIMD ( fvOscMultiplier.z, SinEst01SIMD( fvCos.z ) ) );
if ( m_nField == 6)
{
pOscField->x = MaskedAssign( fl4GoodMask,
MaxSIMD( MinSIMD( fvOscVal.x, Four_Ones), Four_Zeros ), fvOutput.x );
pOscField->y = MaskedAssign( fl4GoodMask,
MaxSIMD( MinSIMD( fvOscVal.y, Four_Ones), Four_Zeros ), fvOutput.y );
pOscField->z = MaskedAssign( fl4GoodMask,
MaxSIMD( MinSIMD( fvOscVal.z, Four_Ones), Four_Zeros ), fvOutput.z );
}
else
{
pOscField->x = MaskedAssign( fl4GoodMask, fvOscVal.x, fvOutput.x );
pOscField->y = MaskedAssign( fl4GoodMask, fvOscVal.y, fvOutput.y );
pOscField->z = MaskedAssign( fl4GoodMask, fvOscVal.z, fvOutput.z );
}
}
++pCreationTime;
++pLifeDuration;
++pOscField;
++pParticleId;
} while (--nCtr );
};
//-----------------------------------------------------------------------------
// Remap Scalar Operator
//-----------------------------------------------------------------------------
class C_OP_RemapScalar : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_RemapScalar );
uint32 GetWrittenAttributes( void ) const
{
return 1 << m_nFieldOutput;
}
uint32 GetReadAttributes( void ) const
{
return 1 << m_nFieldInput;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
int m_nFieldInput;
int m_nFieldOutput;
float m_flInputMin;
float m_flInputMax;
float m_flOutputMin;
float m_flOutputMax;
};
DEFINE_PARTICLE_OPERATOR( C_OP_RemapScalar, "Remap Scalar", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_RemapScalar )
DMXELEMENT_UNPACK_FIELD_USERDATA( "input field", "7", int, m_nFieldInput, "intchoice particlefield_scalar" )
DMXELEMENT_UNPACK_FIELD( "input minimum","0", float, m_flInputMin )
DMXELEMENT_UNPACK_FIELD( "input maximum","1", float, m_flInputMax )
DMXELEMENT_UNPACK_FIELD_USERDATA( "output field", "3", int, m_nFieldOutput, "intchoice particlefield_scalar" )
DMXELEMENT_UNPACK_FIELD( "output minimum","0", float, m_flOutputMin )
DMXELEMENT_UNPACK_FIELD( "output maximum","1", float, m_flOutputMax )
END_PARTICLE_OPERATOR_UNPACK( C_OP_RemapScalar )
void C_OP_RemapScalar::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const