Skip to content

Latest commit

 

History

History
19 lines (15 loc) · 1.07 KB

README.md

File metadata and controls

19 lines (15 loc) · 1.07 KB

Linear Models

The lm.py module implements:

  1. OLS linear regression with maximum likelihood parameter estimates via the normal equation.
  2. Ridge regression / Tikhonov regularization with maximum likelihood parameter estimates via the normal equation.
  3. Logistic regression with maximum likelihood parameter estimates via gradient descent.
  4. Bayesian linear regression with maximum a posteriori parameter estimates via conjugacy
    • Known coefficient prior mean and known error variance
    • Known coefficient prior mean and unknown error variance

Plots