-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathCompute.Detail.pas
568 lines (450 loc) · 17.6 KB
/
Compute.Detail.pas
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
// Copyright 2014 Asbjørn Heid
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
unit Compute.Detail;
interface
uses
Compute,
Compute.Common,
Compute.ExprTrees,
Compute.OpenCL,
Compute.Future.Detail;
type
IComputeAlgorithms = interface
['{941C09AD-FEEC-4BFE-A9C1-C40A3C0D27C0}']
procedure Initialize(const DeviceSelection: ComputeDeviceSelection; const LogProc, DebugLogProc: TLogProc);
function Transform(const Input, Output: TArray<double>; const Expression: Expr): IFuture<TArray<double>>; overload;
function Transform(const InputBuffers: array of IFuture<Buffer<double>>; const FirstElement, NumElements: UInt64; const OutputBuffer: IFuture<Buffer<double>>; const Expression: Expr): IFuture<Buffer<double>>; overload;
function GetContext: CLContext;
function GetCmdQueue: CLCommandQueue;
property Context: CLContext read GetContext;
property CmdQueue: CLCommandQueue read GetCmdQueue;
end;
function Algorithms: IComputeAlgorithms;
implementation
uses
System.SysUtils, System.Math,
Compute.OpenCL.KernelGenerator;
type
TComputeAlgorithmsOpenCLImpl = class(TInterfacedObject, IComputeAlgorithms)
strict private
FLogProc: TLogProc;
FDebugLogProc: TLogProc;
FDevice: CLDevice;
FContext: CLContext;
FCmdQueue: CLCommandQueue;
FMemReadQueue: CLCommandQueue;
FMemWriteQueue: CLCommandQueue;
FKernelCache: IDictionary<string, CLKernel>;
procedure Log(const Msg: string);
procedure DebugLog(const Msg: string); overload;
procedure DebugLog(const FmtMsg: string; const Args: array of const); overload;
function DeviceOptimalNonInterleavedBufferSize: UInt64;
function DeviceOptimalInterleavedBufferSize: UInt64;
procedure VerifyInputBuffers<T>(const InputBuffers: array of IFuture<Buffer<T>>; const NumElements: UInt64);
procedure Initialize(const DeviceSelection: ComputeDeviceSelection; const LogProc, DebugLogProc: TLogProc);
function TransformPlain(const Input, Output: TArray<double>; const Expression: Expr): IFuture<TArray<double>>; overload;
function TransformInterleaved(const Input, Output: TArray<double>; const Expression: Expr): IFuture<TArray<double>>; overload;
function Transform(const Input, Output: TArray<double>; const Expression: Expr): IFuture<TArray<double>>; overload;
function Transform(const InputBuffers: array of IFuture<Buffer<double>>; const FirstElement, NumElements: UInt64; const OutputBuffer: IFuture<Buffer<double>>; const Expression: Expr): IFuture<Buffer<double>>; overload;
function GetContext: CLContext;
function GetCmdQueue: CLCommandQueue;
property Device: CLDevice read FDevice;
property Context: CLContext read FContext;
property CmdQueue: CLCommandQueue read FCmdQueue;
property MemReadQueue: CLCommandQueue read FMemReadQueue;
property MemWriteQueue: CLCommandQueue read FMemWriteQueue;
public
constructor Create;
end;
var
_AlgorithmsImpl: IComputeAlgorithms;
procedure InitializeAlgorithmsImpl;
var
alg: IComputeAlgorithms;
begin
alg := TComputeAlgorithmsOpenCLImpl.Create;
if (AtomicCmpExchange(pointer(_AlgorithmsImpl), pointer(alg), nil) = nil) then
begin
// successfully updated _Algorithms, so manually bump reference count
alg._AddRef;
end;
end;
function Algorithms: IComputeAlgorithms;
begin
result := _AlgorithmsImpl;
if (result <> nil) then
exit;
InitializeAlgorithmsImpl;
result := _AlgorithmsImpl;
end;
{ TComputeAlgorithmsOpenCLImpl }
constructor TComputeAlgorithmsOpenCLImpl.Create;
begin
inherited Create;
end;
procedure TComputeAlgorithmsOpenCLImpl.DebugLog(const Msg: string);
begin
if not Assigned(FDebugLogProc) then
exit;
FDebugLogProc(Msg);
end;
procedure TComputeAlgorithmsOpenCLImpl.DebugLog(const FmtMsg: string;
const Args: array of const);
begin
if not Assigned(FDebugLogProc) then
exit;
FDebugLogProc(Format(FmtMsg, Args));
end;
function TComputeAlgorithmsOpenCLImpl.DeviceOptimalInterleavedBufferSize: UInt64;
begin
// for now some magic numbers
// to be replaced by something better
if Device.IsType[DeviceTypeCPU] then
result := 32
else if Device.IsType[DeviceTypeGPU] then
result := 32
else
result := 32;
result := result * 1024 * 1024;
end;
function TComputeAlgorithmsOpenCLImpl.DeviceOptimalNonInterleavedBufferSize: UInt64;
begin
// for now some magic numbers
// to be replaced by something better
if Device.IsType[DeviceTypeCPU] then
result := 32
else if Device.IsType[DeviceTypeGPU] then
result := 128
else
result := 32;
result := result * 1024 * 1024;
end;
function TComputeAlgorithmsOpenCLImpl.GetCmdQueue: CLCommandQueue;
begin
result := FCmdQueue;
end;
function TComputeAlgorithmsOpenCLImpl.GetContext: CLContext;
begin
result := FContext;
end;
procedure TComputeAlgorithmsOpenCLImpl.Initialize(const DeviceSelection: ComputeDeviceSelection; const LogProc, DebugLogProc: TLogProc);
var
platforms: CLPlatforms;
plat: CLPlatform;
foundDevice: boolean;
foundPreferredDevice: boolean;
devIsPreferredType: boolean;
selectDevice: boolean;
dev, selectedDev: CLDevice;
begin
FLogProc := LogProc;
FDebugLogProc := DebugLogProc;
platforms := CLPlatforms.Create(DebugLogProc);
plat := platforms[0];
foundDevice := False;
foundPreferredDevice := False;
for dev in plat.AllDevices do
begin
if not (dev.SupportsFP64 and dev.IsAvailable) then
continue;
case DeviceSelection of
PreferCPUDevice: devIsPreferredType := dev.IsType[DeviceTypeCPU];
PreferGPUDevice: devIsPreferredType := dev.IsType[DeviceTypeGPU];
else
devIsPreferredType := False;
end;
if (foundPreferredDevice and (not devIsPreferredType)) then
continue;
selectDevice := (not foundDevice) or ((not foundPreferredDevice) and devIsPreferredType);
// GPU - prefer memory over compute units
selectDevice := selectDevice
or ((dev.IsType[DeviceTypeGPU]) and ((dev.MaxMemAllocSize > selectedDev.MaxMemAllocSize)
or (dev.MaxComputeUnits > selectedDev.MaxComputeUnits)));
// CPU - assume memory is not an issue, prefer compute units
selectDevice := selectDevice
or ((dev.IsType[DeviceTypeGPU]) and ((dev.MaxComputeUnits > selectedDev.MaxComputeUnits)
or (dev.MaxMemAllocSize > selectedDev.MaxMemAllocSize)));
if (selectDevice) then
begin
selectedDev := dev;
foundDevice := True;
foundPreferredDevice := devIsPreferredType;
end;
end;
if (not foundDevice) then
raise ENotSupportedException.Create('No suitable OpenCL device found');
FDevice := selectedDev;
Log('Compute device used: ' + FDevice.Name);
FContext := plat.CreateContext([FDevice]);
FCmdQueue := FContext.CreateCommandQueue(FDevice);
FMemReadQueue := FContext.CreateCommandQueue(FDevice);
// AMD dev suggests using two queues only (exec/mem), Intel is broken with separate read/write queues
// so for now, use same queue for read/write
//FMemWriteQueue := FContext.CreateCommandQueue(FDevice);
FMemWriteQueue := FMemReadQueue;
FKernelCache := TDictionaryImpl<string, CLKernel>.Create;
end;
procedure TComputeAlgorithmsOpenCLImpl.Log(const Msg: string);
begin
if not Assigned(FLogProc) then
exit;
FLogProc(Msg);
end;
function TComputeAlgorithmsOpenCLImpl.Transform(const Input,
Output: TArray<double>; const Expression: Expr): IFuture<TArray<double>>;
begin
if (Length(Input) <> Length(Output)) then
raise EArgumentException.Create('Transform: Input length is not equal to output length');
//if (Length(Input) <= 256 * 1024 * 1024) then
//result := TransformPlain(Input, Output, Expression);
result := TransformInterleaved(Input, Output, Expression);
end;
function TComputeAlgorithmsOpenCLImpl.TransformInterleaved(const Input,
Output: TArray<double>; const Expression: Expr): IFuture<TArray<double>>;
var
vectorWidth, vectorSize: UInt32;
inputSize, bufferSize: UInt64;
srcBuffer, resBuffer: array[0..1] of CLBuffer;
prog: CLProgram;
kernel: CLKernel;
kernelSrc: string;
kernelGen: IKernelGenerator;
workGroupSize: UInt32;
globalWorkSize: UInt64;
writeEvent, execEvent, readEvent: array[0..1] of CLEvent;
bufferOffset, bufferRemaining, workItemOffset: UInt64;
current_idx: integer;
begin
vectorWidth := Max(1, Device.PreferredVectorWidthDouble);
inputSize := Length(Input) * SizeOf(double);
bufferSize := Min(DeviceOptimalInterleavedBufferSize, inputSize);
vectorSize := SizeOf(double) * vectorWidth;
if ((bufferSize mod vectorSize) <> 0) then
begin
bufferSize := vectorSize * CeilU(bufferSize / vectorSize);
end;
srcBuffer[0] := Context.CreateDeviceBuffer(BufferAccessReadOnly, bufferSize);
srcBuffer[1] := Context.CreateDeviceBuffer(BufferAccessReadOnly, bufferSize);
resBuffer[0] := Context.CreateDeviceBuffer(BufferAccessWriteOnly, srcBuffer[0].Size);
resBuffer[1] := Context.CreateDeviceBuffer(BufferAccessWriteOnly, srcBuffer[1].Size);
kernelGen := DefaultKernelGenerator(vectorWidth);
kernelSrc := kernelGen.GenerateDoubleTransformKernel(Expression);
DebugLog(kernelSrc);
prog := Context.CreateProgram(kernelSrc);
if not prog.Build([Device]) then
begin
raise Exception.Create('Error building OpenCL kernel:' + #13#10 + prog.BuildLog);
end;
kernel := prog.CreateKernel('transform_double_1');
workGroupSize := kernel.PreferredWorkgroupSizeMultiple;
if (workGroupSize = 1) then
workGroupSize := kernel.MaxWorkgroupSize;
if (workGroupSize > 1) or (bufferSize < inputSize) then
begin
globalWorkSize := workGroupSize * UInt32(Ceil(bufferSize / (SizeOf(double) * workGroupSize)));
end
else
begin
globalWorkSize := Length(Input);
end;
workItemOffset := 0;
bufferOffset := 0;
writeEvent[0] := nil;
writeEvent[1] := nil;
execEvent[0] := nil;
execEvent[1] := nil;
readEvent[0] := nil;
readEvent[1] := nil;
current_idx := 1;
while (bufferOffset < inputSize) do
begin
current_idx := (current_idx + 1) and 1;
bufferRemaining := inputSize - bufferOffset;
// write doesn't have to wait for the read, only kernel exec using this buffer
writeEvent[current_idx] := MemWriteQueue.EnqueueWriteBuffer(srcBuffer[current_idx], BufferCommmandNonBlocking, 0, Min(bufferRemaining, srcBuffer[current_idx].Size), @Input[workItemOffset], [execEvent[current_idx]]);
// update kernel arguments
kernel.Arguments[0] := srcBuffer[current_idx];
kernel.Arguments[1] := resBuffer[current_idx];
kernel.Arguments[2] := UInt64(Length(Input));
// don't exec kernel until previous write has been done
execEvent[current_idx] := CmdQueue.Enqueue1DRangeKernel(kernel, Range1D(0), Range1D(globalWorkSize), Range1D(workGroupSize), [writeEvent[current_idx]]);
readEvent[current_idx] := MemReadQueue.EnqueueReadBuffer(resBuffer[current_idx], BufferCommmandNonBlocking, 0, Min(bufferRemaining, resBuffer[current_idx].Size), @Output[workItemOffset], [execEvent[current_idx]]);
workItemOffset := workItemOffset + globalWorkSize;
bufferOffset := workItemOffset * SizeOf(double);
end;
// wait for last read
result := TOpenCLFutureImpl<TArray<double>>.Create(readEvent[current_idx], Output);
end;
function TComputeAlgorithmsOpenCLImpl.TransformPlain(const Input,
Output: TArray<double>; const Expression: Expr): IFuture<TArray<double>>;
var
vectorWidth, vectorSize: UInt32;
inputSize, bufferSize: UInt64;
srcBuffer, resBuffer: CLBuffer;
prog: CLProgram;
kernel: CLKernel;
kernelSrc: string;
kernelGen: IKernelGenerator;
workGroupSize: UInt32;
globalWorkSize: UInt64;
writeEvent, execEvent, readEvent: CLEvent;
bufferOffset, bufferRemaining, workItemOffset: UInt64;
begin
vectorWidth := Max(1, Device.PreferredVectorWidthDouble);
inputSize := Length(Input) * SizeOf(double);
bufferSize := Min(DeviceOptimalNonInterleavedBufferSize, inputSize);
vectorSize := SizeOf(double) * vectorWidth;
if ((bufferSize mod vectorSize) <> 0) then
begin
bufferSize := vectorSize * CeilU(bufferSize / vectorSize);
end;
srcBuffer := Context.CreateDeviceBuffer(BufferAccessReadOnly, bufferSize);
resBuffer := Context.CreateDeviceBuffer(BufferAccessWriteOnly, srcBuffer.Size);
kernelGen := DefaultKernelGenerator(vectorWidth);
kernelSrc := kernelGen.GenerateDoubleTransformKernel(Expression);
DebugLog(kernelSrc);
prog := Context.CreateProgram(kernelSrc);
if not prog.Build([Device]) then
begin
raise Exception.Create('Error building OpenCL kernel:' + #13#10 + prog.BuildLog);
end;
kernel := prog.CreateKernel('transform_double_1');
kernel.Arguments[0] := srcBuffer;
kernel.Arguments[1] := resBuffer;
kernel.Arguments[2] := UInt64(Length(Input));
workGroupSize := kernel.PreferredWorkgroupSizeMultiple;
if (workGroupSize = 1) then
workGroupSize := kernel.MaxWorkgroupSize;
if (workGroupSize > 1) or (bufferSize < inputSize) then
begin
globalWorkSize := workGroupSize * UInt32(Ceil(bufferSize / (SizeOf(double) * workGroupSize)));
end
else
begin
globalWorkSize := Length(Input);
end;
workItemOffset := 0;
bufferOffset := 0;
writeEvent := nil;
execEvent := nil;
readEvent := nil;
while (bufferOffset < inputSize) do
begin
bufferRemaining := inputSize - bufferOffset;
// write doesn't have to wait for the read, only last kernel exec
writeEvent := MemWriteQueue.EnqueueWriteBuffer(srcBuffer, BufferCommmandNonBlocking, 0, Min(bufferRemaining, srcBuffer.Size), @Input[workItemOffset], [execEvent]);
// don't exec kernel until previous write has been done
execEvent := CmdQueue.Enqueue1DRangeKernel(kernel, Range1D(0), Range1D(globalWorkSize), Range1D(workGroupSize), [writeEvent]);
readEvent := MemReadQueue.EnqueueReadBuffer(resBuffer, BufferCommmandNonBlocking, 0, Min(bufferRemaining, resBuffer.Size), @Output[workItemOffset], [execEvent]);
workItemOffset := workItemOffset + globalWorkSize;
bufferOffset := workItemOffset * SizeOf(double);
end;
// wait for last read
result := TOpenCLFutureImpl<TArray<double>>.Create(readEvent, Output);
end;
procedure TComputeAlgorithmsOpenCLImpl.VerifyInputBuffers<T>(
const InputBuffers: array of IFuture<Buffer<T>>;
const NumElements: UInt64);
var
numElms: TArray<UInt64>;
minNum: UInt64;
begin
numElms := Functional.Map<IFuture<Buffer<T>>, UInt64>(InputBuffers,
function(const f: IFuture<Buffer<T>>): UInt64
begin
result := f.PeekValue.NumElements;
end);
minNum := Functional.Reduce<UInt64>(numElms,
function(const accumulator, v: UInt64): UInt64
begin
result := IfThen(accumulator = 0, v, Min(accumulator, v));
end);
if (minNum < NumElements) then
raise EArgumentException.Create('At least one input buffer contains less than the requested number of elements');
end;
function TComputeAlgorithmsOpenCLImpl.Transform(
const InputBuffers: array of IFuture<Buffer<double>>;
const FirstElement, NumElements: UInt64;
const OutputBuffer: IFuture<Buffer<double>>;
const Expression: Expr): IFuture<Buffer<double>>;
var
numInputs: UInt32;
vectorWidth, vectorSize: UInt32;
inputLength, inputSize: UInt64;
prog: CLProgram;
kernel: CLKernel;
kernelSrc: string;
kernelGen: IKernelGenerator;
workGroupSize: UInt32;
globalWorkSize: UInt64;
inputEvents: TArray<CLEvent>;
execEvent: CLEvent;
i: UInt32;
begin
numInputs := Length(InputBuffers);
//vectorWidth := Max(1, Device.PreferredVectorWidthDouble);
vectorWidth := 1; // seems AMD's OpenCL compiler isn't too keen on vectorized doubles
inputSize := NumElements * SizeOf(double);
inputLength := NumElements;
vectorSize := SizeOf(double) * vectorWidth;
VerifyInputBuffers<double>(InputBuffers, NumElements);
if ((inputSize mod vectorSize) <> 0) then
begin
vectorWidth := 1;
end;
kernelGen := DefaultKernelGenerator(vectorWidth);
kernelSrc := kernelGen.GenerateDoubleTransformKernel(Expression, numInputs);
if not FKernelCache.Contains[kernelSrc] then
begin
DebugLog(kernelSrc);
prog := Context.CreateProgram(kernelSrc);
if not prog.Build([Device]) then
begin
raise Exception.Create('Error building OpenCL kernel:' + #13#10 + prog.BuildLog);
end;
DebugLog(prog.BuildLog);
kernel := prog.CreateKernel('transform_double_' + IntToStr(numInputs));
FKernelCache[kernelSrc] := kernel;
end
else
begin
kernel := FKernelCache[kernelSrc];
end;
for i := 0 to numInputs-1 do
begin
kernel.Arguments[i] := InputBuffers[i].PeekValue.Handle;
end;
kernel.Arguments[numInputs+0] := OutputBuffer.PeekValue.Handle;
kernel.Arguments[numInputs+1] := inputLength;
workGroupSize := kernel.PreferredWorkgroupSizeMultiple;
if (workGroupSize = 1) then
workGroupSize := kernel.MaxWorkgroupSize;
if (workGroupSize > 1) then
begin
globalWorkSize := workGroupSize * UInt32(Ceil(inputSize / (SizeOf(double) * workGroupSize)));
end
else
begin
globalWorkSize := inputLength;
end;
SetLength(inputEvents, numInputs+1);
for i := 0 to numInputs-1 do
inputEvents[i] := InputBuffers[i].Event;
inputEvents[numInputs] := OutputBuffer.Event;
// don't exec kernel until buffer is ready
execEvent := CmdQueue.Enqueue1DRangeKernel(kernel, Range1D(0), Range1D(globalWorkSize), Range1D(workGroupSize), inputEvents);
// wait for last read
result := TOpenCLFutureImpl<Buffer<double>>.Create(execEvent, OutputBuffer.PeekValue);
end;
end.