-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathestimator.py
276 lines (236 loc) · 11.2 KB
/
estimator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import os
import logging
import numpy as np
import torch
import torch.nn as nn
from torch import optim
from utils import to_device, reparameterize
from dbquery import DBQuery
from rlmodule import AIRL
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class RewardEstimator(object):
def __init__(self, args, config, manager, character, pretrain=False, inference=False):
self.character = character
# 实例化IRL模型
self.irl = AIRL(config, args.gamma, character=character).to(device=DEVICE)
# 超参数设定区
self.step = 0
self.anneal = args.anneal
self.optim_batchsz = args.batchsz
self.weight_cliping_limit = args.clip
self.save_per_epoch = args.save_per_epoch
self.save_dir = args.save_dir
self.irl_params = self.irl.parameters()
self.irl_optim = optim.RMSprop(self.irl_params, lr=args.lr_irl)
self.irl.eval()
db = DBQuery(args.data_dir, config)
# 预训练模式:切分3个数据集 -> 放入迭代器中。
if pretrain:
self.print_per_batch = args.print_per_batch
self.data_train = manager.create_dataset_irl('train', args.batchsz, config, db, self.character)
self.data_valid = manager.create_dataset_irl('valid', args.batchsz, config, db, self.character)
self.data_test = manager.create_dataset_irl('test', args.batchsz, config, db, self.character)
self.irl_iter = iter(self.data_train)
self.irl_iter_valid = iter(self.data_valid)
self.irl_iter_test = iter(self.data_test)
# 训练模式:切分训练集和验证集 -> 放入迭代器中。
elif not inference:
self.data_train = manager.create_dataset_irl('train', args.batchsz, config, db, character)
self.data_valid = manager.create_dataset_irl('valid', args.batchsz, config, db, character)
self.irl_iter = iter(self.data_train)
self.irl_iter_valid = iter(self.data_valid)
# 分别计算并返回真实经验、模拟经验的loss
def irl_loop(self, data_real, data_gen):
s_real, a_real, next_s_real = to_device(data_real)
s, a, next_s = data_gen
# train with real data
weight_real = self.irl(s_real, a_real, next_s_real)
loss_real = -weight_real.mean()
# train with generated data
weight = self.irl(s, a, next_s)
loss_gen = weight.mean()
return loss_real, loss_gen
# 训练模型
def train_irl(self, batch, epoch):
self.irl.train()
if self.character == 'sys':
input_s = torch.from_numpy(np.stack(batch.state_sys)).to(device=DEVICE)
input_a = torch.from_numpy(np.stack(batch.action_sys)).to(device=DEVICE)
input_next_s = torch.from_numpy(np.stack(batch.state_sys_next)).to(device=DEVICE)
elif self.character == 'usr':
input_s = torch.from_numpy(np.stack(batch.state_usr)).to(device=DEVICE)
input_a = torch.from_numpy(np.stack(batch.action_usr)).to(device=DEVICE)
input_next_s = torch.from_numpy(np.stack(batch.state_usr_next)).to(device=DEVICE)
else:
raise NotImplementedError('Unknown character {}'.format(self.character))
batchsz = input_s.size(0)
# 将sampler()得到的数据分块
turns = batchsz // self.optim_batchsz
s_chunk = torch.chunk(input_s, turns)
a_chunk = torch.chunk(input_a.float(), turns)
next_s_chunk = torch.chunk(input_next_s, turns)
# 训练
real_loss, gen_loss = 0., 0.
for s, a, next_s in zip(s_chunk, a_chunk, next_s_chunk):
try:
data = self.irl_iter.next() # data为数据集的数据
except StopIteration:
self.irl_iter = iter(self.data_train)
data = self.irl_iter.next()
self.irl_optim.zero_grad()
loss_real, loss_gen = self.irl_loop(data, (s, a, next_s))
real_loss += loss_real.item()
gen_loss += loss_gen.item()
loss = loss_real + loss_gen
loss.backward()
self.irl_optim.step()
for p in self.irl_params:
p.data.clamp_(-self.weight_cliping_limit, self.weight_cliping_limit)
real_loss /= turns
gen_loss /= turns
logging.debug('<<reward estimator {}>> epoch {}, loss_real:{}, loss_gen:{}'.format(
self.character, epoch, real_loss, gen_loss))
if (epoch + 1) % self.save_per_epoch == 0:
self.save_irl(self.save_dir, epoch)
self.irl.eval()
# 验证和测试最优模型
def test_irl(self, batch, epoch, best):
if self.character == 'sys':
input_s = torch.from_numpy(np.stack(batch.state_sys)).to(device=DEVICE)
input_a = torch.from_numpy(np.stack(batch.action_sys)).to(device=DEVICE)
input_next_s = torch.from_numpy(np.stack(batch.state_sys_next)).to(device=DEVICE)
elif self.character == 'usr':
input_s = torch.from_numpy(np.stack(batch.state_usr)).to(device=DEVICE)
input_a = torch.from_numpy(np.stack(batch.action_usr)).to(device=DEVICE)
input_next_s = torch.from_numpy(np.stack(batch.state_usr_next)).to(device=DEVICE)
else:
raise NotImplementedError('Unknown character {}'.format(self.character))
batchsz = input_s.size(0)
# 将sampler()得到的数据分块
turns = batchsz // self.optim_batchsz
s_chunk = torch.chunk(input_s, turns)
a_chunk = torch.chunk(input_a.float(), turns)
next_s_chunk = torch.chunk(input_next_s, turns)
# 在验证集上找出最优模型
real_loss, gen_loss = 0., 0.
for s, a, next_s in zip(s_chunk, a_chunk, next_s_chunk):
try:
data = self.irl_iter_valid.next()
except StopIteration:
self.irl_iter_valid = iter(self.data_valid)
data = self.irl_iter_valid.next()
loss_real, loss_gen = self.irl_loop(data, (s, a, next_s))
real_loss += loss_real.item()
gen_loss += loss_gen.item()
real_loss /= turns
gen_loss /= turns
logging.debug('<<reward estimator {}>> validation, epoch {}, loss_real:{}, loss_gen:{}'.format(
self.character, epoch, real_loss, gen_loss))
loss = real_loss + gen_loss
if loss < best:
logging.info('<<reward estimator>> best model saved')
best = loss
self.save_irl(self.save_dir, 'best')
# 在测试集上测试最优模型
for s, a, next_s in zip(s_chunk, a_chunk, next_s_chunk):
try:
data = self.irl_iter_test.next()
except StopIteration:
self.irl_iter_test = iter(self.data_test)
data = self.irl_iter_test.next()
loss_real, loss_gen = self.irl_loop(data, (s, a, next_s))
real_loss += loss_real.item()
gen_loss += loss_gen.item()
real_loss /= turns
gen_loss /= turns
logging.debug('<<reward estimator {}>> test, epoch {}, loss_real:{}, loss_gen:{}'.format(
self.character, epoch, real_loss, gen_loss))
return best
# 更新模型
def update_irl(self, inputs, batchsz, epoch, best=None):
"""
train the reward estimator (together with encoder) using cross entropy loss (real, mixed, generated)
Args:
inputs: (s, a, next_s)
"""
backward = True if best is None else False
if backward:
self.irl.train()
input_s, input_a, input_next_s = inputs
# 分块
turns = batchsz // self.optim_batchsz
s_chunk = torch.chunk(input_s, turns)
a_chunk = torch.chunk(input_a.float(), turns)
next_s_chunk = torch.chunk(input_next_s, turns)
real_loss, gen_loss = 0., 0.
for s, a, next_s in zip(s_chunk, a_chunk, next_s_chunk):
# 训练模式
if backward:
try:
data = self.irl_iter.next()
except StopIteration:
self.irl_iter = iter(self.data_train)
data = self.irl_iter.next()
# 测试模式
else:
try:
data = self.irl_iter_valid.next()
except StopIteration:
self.irl_iter_valid = iter(self.data_valid)
data = self.irl_iter_valid.next()
if backward:
self.irl_optim.zero_grad()
loss_real, loss_gen = self.irl_loop(data, (s, a, next_s))
real_loss += loss_real.item()
gen_loss += loss_gen.item()
if backward:
loss = loss_real + loss_gen
loss.backward()
self.irl_optim.step()
for p in self.irl_params:
p.data.clamp_(-self.weight_cliping_limit, self.weight_cliping_limit)
real_loss /= turns
gen_loss /= turns
# 训练模式:记录训练结果
if backward:
logging.debug('<<reward estimator {}>> epoch {}, loss_real:{}, loss_gen:{}'.format(
self.character, epoch, real_loss, gen_loss))
self.irl.eval()
# 否则即为测试模式:记录验证集结果,保存最佳模型
else:
logging.debug('<<reward estimator {}>> validation, epoch {}, loss_real:{}, loss_gen:{}'.format(
self.character, epoch, real_loss, gen_loss))
loss = real_loss + gen_loss
if loss < best:
logging.info('<<reward estimator {}>> best model saved'.format(self.character))
best = loss
self.save_irl(self.save_dir, 'best')
return best
# 推断reward
def estimate(self, s, a, next_s, log_pi):
"""
infer the reward of state action pair with the estimator
"""
weight = self.irl(s, a.float(), next_s) # weight = f(s, a, s')
logging.debug('<<reward estimator {}>> weight {}'.format(self.character, weight.mean().item()))
logging.debug('<<reward estimator {}>> log pi {}'.format(self.character, log_pi.mean().item()))
# see AIRL paper
# r = f(s, a, s') - log_p(a|s)
reward = (weight - log_pi).squeeze(-1)
return reward
# 保存模型
def save_irl(self, directory, epoch):
if not os.path.exists(directory):
os.makedirs(directory)
os.makedirs(directory + '/sys')
os.makedirs(directory + '/usr')
os.makedirs(directory + '/vnet')
torch.save(self.irl.state_dict(), directory + '/' + self.character + '/' + str(epoch) + '_estimator.mdl')
logging.info('<<reward estimator {}>> epoch {}: saved network to mdl'.format(self.character, epoch))
# 载入模型
def load_irl(self, filename):
directory, epoch = filename.rsplit('/', 1)
irl_mdl = directory + '/' + self.character + '/' + epoch + '_estimator.mdl'
if os.path.exists(irl_mdl):
self.irl.load_state_dict(torch.load(irl_mdl))
logging.info('<<reward estimator {}>> loaded checkpoint from file: {}'.format(self.character, irl_mdl))