forked from jacobgil/pytorch-grad-cam
-
Notifications
You must be signed in to change notification settings - Fork 2
/
grad-cam.py
333 lines (270 loc) · 11.8 KB
/
grad-cam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import argparse
import cv2
import json
import numpy as np
import torch
from torch.autograd import Function
from torchvision import models
class FeatureExtractor():
""" Class for extracting activations and
registering gradients from targetted intermediate layers """
def __init__(self, model, pre_features, features, target_layers):
self.model = model
self.pre_features = pre_features
self.features = features
self.target_layers = target_layers
self.gradients = []
def save_gradient(self, grad):
self.gradients.append(grad)
def __call__(self, x):
outputs = []
self.gradients = []
for pref in self.pre_features:
x = getattr(self.model, pref)(x)
submodel = getattr(self.model, self.features)
# go through the feature extractor's forward pass
for name, module in submodel._modules.items():
# print(name, module)
x = module(x)
if name in self.target_layers:
x.register_hook(self.save_gradient)
outputs += [x]
return outputs, x
class ModelOutputs():
""" Class for making a forward pass, and getting:
1. The network output.
2. Activations from intermeddiate targetted layers.
3. Gradients from intermeddiate targetted layers. """
def __init__(self, model,
pre_feature_block=[],
feature_block='features',
target_layers='35',
classifier_block=['classifier']):
self.model = model
self.classifier_block = classifier_block
# assume the model has a module named `feature` ⬇⬇⬇⬇⬇⬇⬇⬇
self.feature_extractor = FeatureExtractor(self.model,
pre_feature_block,
feature_block,
target_layers)
def get_gradients(self):
return self.feature_extractor.gradients
def __call__(self, x):
# ⬇ target layer ⬇ final layer's output
target_activations, output = self.feature_extractor(x)
print('target_activations[0].size: {}'.format(target_activations[0].size()))# for vgg'35 ([1, 512, 14, 14])
print('output.size: {}'.format(output.size())) # for vgg'36 ([1, 512, 7, 7])
for i, classifier in enumerate(self.classifier_block):
if i == len(self.classifier_block) - 1:
output = output.view(output.size(0), -1)
print('output.view.size: {}'.format(output.size())) # for vgg'36 ([1, 25088])
output = getattr(self.model, classifier)(output)
print('output.size: {}'.format(output.size())) # for vgg'36 ([1, 1000])
return target_activations, output
def preprocess_image(img):
means = [0.485, 0.456, 0.406]
stds = [0.229, 0.224, 0.225]
preprocessed_img = img.copy()[:, :, ::-1]
for i in range(3):
preprocessed_img[:, :, i] = preprocessed_img[:, :, i] - means[i]
preprocessed_img[:, :, i] = preprocessed_img[:, :, i] / stds[i]
preprocessed_img = \
np.ascontiguousarray(np.transpose(preprocessed_img, (2, 0, 1)))
preprocessed_img = torch.from_numpy(preprocessed_img)
preprocessed_img.unsqueeze_(0)
input = preprocessed_img.requires_grad_(True)
return input
def show_cam_on_image(img, mask):
heatmap = cv2.applyColorMap(np.uint8(255 * mask), cv2.COLORMAP_JET)
heatmap = np.float32(heatmap) / 255
cam = heatmap + np.float32(img)
cam = cam / np.max(cam)
cv2.imwrite("cam.jpg", np.uint8(255 * cam))
class GradCam:
def __init__(self, model, pre_feature_block, feature_block, target_layer_names, classifier_block, use_cuda):
self.model = model
self.model.eval()
self.pre_feature_block = pre_feature_block
self.feature_block = feature_block
self.classifier_block = classifier_block
self.cuda = use_cuda
if self.cuda:
self.model = model.cuda()
self.extractor = ModelOutputs(self.model,
pre_feature_block,
feature_block,
target_layer_names,
classifier_block)
def forward(self, input):
return self.model(input)
def __call__(self, input, index=None):
if self.cuda:
features, output = self.extractor(input.cuda())
else:
features, output = self.extractor(input)
if index == None:
index = np.argmax(output.cpu().data.numpy())
with open('imagenet_class_index.json') as f:
labels = json.load(f)
print('prediction[{}]: {}'.format(index, labels[str(index)][1]))
print('output.size: {}'.format(output.size())) # for vgg'36 ([1, 1000])
one_hot = np.zeros((1, output.size()[-1]), dtype=np.float32)
one_hot[0][index] = 1
one_hot = torch.from_numpy(one_hot).requires_grad_(True)
if self.cuda:
one_hot = torch.sum(one_hot.cuda() * output)
else:
one_hot = torch.sum(one_hot * output)
#print('output: {}'.format(output))
#print('one_hot: {}'.format(one_hot)) #
getattr(self.model, self.feature_block).zero_grad()
for classifier in self.classifier_block:
getattr(self.model, classifier).zero_grad()
one_hot.backward(retain_graph=True)
gradients = self.extractor.get_gradients()
#print('len(gradients): {}'.format(len(gradients)))
print('gradients[0].size(): {}'.format(gradients[0].size()))
grads_val = self.extractor.get_gradients()[-1].cpu().data.numpy()
target = features[-1]
print('target.size(): {}'.format(target.size()))
target = target.cpu().data.numpy()[0, :]
print('target.shape: {}'.format(target.shape))
weights = np.mean(grads_val, axis=(2, 3))[0, :]
print('weights.shape: {}'.format(weights.shape))
cam = np.zeros(target.shape[1:], dtype=np.float32)
print('cam.shape: {}'.format(cam.shape)) # (14, 14)
for i, w in enumerate(weights):
cam += w * target[i, :, :]
#print('cam: {}'.format(cam))
print('cam.shape: {}'.format(cam.shape))
cam = np.maximum(cam, 0) # remove negative numbers
cam = cv2.resize(cam, (224, 224))
print('cam.shape: {}'.format(cam.shape))
#print('cam: {}'.format(cam))
cam = cam - np.min(cam)
cam = cam / np.max(cam)
return cam
class GuidedBackpropReLU(Function):
@staticmethod
def forward(self, input):
positive_mask = (input > 0).type_as(input)
output = torch.addcmul(torch.zeros(input.size()).type_as(input), input, positive_mask)
self.save_for_backward(input, output)
return output
@staticmethod
def backward(self, grad_output):
input, output = self.saved_tensors
grad_input = None
positive_mask_1 = (input > 0).type_as(grad_output)
positive_mask_2 = (grad_output > 0).type_as(grad_output)
grad_input = torch.addcmul(torch.zeros(input.size()).type_as(input),
torch.addcmul(torch.zeros(input.size()).type_as(input), grad_output,
positive_mask_1), positive_mask_2)
return grad_input
class GuidedBackpropReLUModel:
def __init__(self, model, use_cuda):
self.model = model
self.model.eval()
self.cuda = use_cuda
if self.cuda:
self.model = model.cuda()
# replace ReLU with GuidedBackpropReLU
for idx, module in self.model.features._modules.items():
if module.__class__.__name__ == 'ReLU':
self.model.features._modules[idx] = GuidedBackpropReLU.apply
def forward(self, input):
return self.model(input)
def __call__(self, input, index=None):
if self.cuda:
output = self.forward(input.cuda())
else:
output = self.forward(input)
if index == None:
index = np.argmax(output.cpu().data.numpy())
one_hot = np.zeros((1, output.size()[-1]), dtype=np.float32)
one_hot[0][index] = 1
one_hot = torch.from_numpy(one_hot).requires_grad_(True)
if self.cuda:
one_hot = torch.sum(one_hot.cuda() * output)
else:
one_hot = torch.sum(one_hot * output)
one_hot.backward(retain_graph=True)
output = input.grad.cpu().data.numpy()
output = output[0, :, :, :]
return output
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--use-cuda', action='store_true', default=False,
help='Use NVIDIA GPU acceleration')
parser.add_argument('--image-path', type=str, default='./examples/both.png',
help='Input image path')
args = parser.parse_args()
args.use_cuda = args.use_cuda and torch.cuda.is_available()
if args.use_cuda:
print("Using GPU for acceleration")
else:
print("Using CPU for computation")
return args
def deprocess_image(img):
""" see https://github.com/jacobgil/keras-grad-cam/blob/master/grad-cam.py#L65 """
img = img - np.mean(img)
img = img / (np.std(img) + 1e-5)
img = img * 0.1
img = img + 0.5
img = np.clip(img, 0, 1)
return np.uint8(img*255)
if __name__ == '__main__':
""" python grad_cam.py <path_to_image>
1. Loads an image with opencv.
2. Preprocesses it for VGG19 and converts to a pytorch variable.
3. Makes a forward pass to find the category index with the highest score,
and computes intermediate activations.
Makes the visualization. """
image_path = './examples/wolf.png'
use_cuda = False
# Can work with any model, but it assumes that the model has a
# feature method, and a classifier method,
# as in the VGG models in torchvision.
config = {
'vgg19': {
'pre_feature': [],
'features': 'features',
'target': ['35'],
'classifier': ['classifier']
},
'resnet50': {
'pre_feature': ['conv1', 'bn1', 'relu', 'maxpool', 'layer1', 'layer2', 'layer3'],
'features': 'layer4',
'target': ['2'],
'classifier': ['avgpool', 'fc']
}
}
model_name = 'resnet50'
config = config[model_name]
model = getattr(models, model_name)(pretrained=True)
grad_cam = GradCam(model,
pre_feature_block=config['pre_feature'],
feature_block=config['features'], # features
target_layer_names=config['target'],
classifier_block=config['classifier'], # classifier
use_cuda=use_cuda)
img = cv2.imread(image_path, 1)
img = np.float32(cv2.resize(img, (224, 224))) / 255
#print('img.size(): {}'.format(img.size))
input = preprocess_image(img)
#print('input.size(): {}'.format(input.size()))
# If None, returns the map for the highest scoring category.
# Otherwise, targets the requested index.
target_index = None
mask = grad_cam(input, target_index)
show_cam_on_image(img, mask)
'''
gb_model = GuidedBackpropReLUModel(model=models.vgg19(pretrained=True), use_cuda=use_cuda)
gb = gb_model(input, index=target_index)
gb = gb.transpose((1, 2, 0))
cam_mask = cv2.merge([mask, mask, mask])
cam_gb = deprocess_image(cam_mask*gb)
gb = deprocess_image(gb)
cv2.imwrite('gb.jpg', gb)
cv2.imwrite('cam_gb.jpg', cam_gb)
'''