forked from vqdang/hover_net
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstats_utils.py
executable file
·429 lines (367 loc) · 15.8 KB
/
stats_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
import warnings
import cv2
import matplotlib.pyplot as plt
import numpy as np
import scipy
from scipy.optimize import linear_sum_assignment
# --------------------------Optimised for Speed
def get_fast_aji(true, pred):
"""AJI version distributed by MoNuSeg, has no permutation problem but suffered from
over-penalisation similar to DICE2.
Fast computation requires instance IDs are in contiguous orderding i.e [1, 2, 3, 4]
not [2, 3, 6, 10]. Please call `remap_label` before hand and `by_size` flag has no
effect on the result.
"""
true = np.copy(true) # ? do we need this
pred = np.copy(pred)
true_id_list = list(np.unique(true))
pred_id_list = list(np.unique(pred))
true_masks = [
None,
]
for t in true_id_list[1:]:
t_mask = np.array(true == t, np.uint8)
true_masks.append(t_mask)
pred_masks = [
None,
]
for p in pred_id_list[1:]:
p_mask = np.array(pred == p, np.uint8)
pred_masks.append(p_mask)
# prefill with value
pairwise_inter = np.zeros(
[len(true_id_list) - 1, len(pred_id_list) - 1], dtype=np.float64
)
pairwise_union = np.zeros(
[len(true_id_list) - 1, len(pred_id_list) - 1], dtype=np.float64
)
# caching pairwise
for true_id in true_id_list[1:]: # 0-th is background
t_mask = true_masks[true_id]
pred_true_overlap = pred[t_mask > 0]
pred_true_overlap_id = np.unique(pred_true_overlap)
pred_true_overlap_id = list(pred_true_overlap_id)
for pred_id in pred_true_overlap_id:
if pred_id == 0: # ignore
continue # overlaping background
p_mask = pred_masks[pred_id]
total = (t_mask + p_mask).sum()
inter = (t_mask * p_mask).sum()
pairwise_inter[true_id - 1, pred_id - 1] = inter
pairwise_union[true_id - 1, pred_id - 1] = total - inter
pairwise_iou = pairwise_inter / (pairwise_union + 1.0e-6)
# pair of pred that give highest iou for each true, dont care
# about reusing pred instance multiple times
paired_pred = np.argmax(pairwise_iou, axis=1)
pairwise_iou = np.max(pairwise_iou, axis=1)
# exlude those dont have intersection
paired_true = np.nonzero(pairwise_iou > 0.0)[0]
paired_pred = paired_pred[paired_true]
# print(paired_true.shape, paired_pred.shape)
overall_inter = (pairwise_inter[paired_true, paired_pred]).sum()
overall_union = (pairwise_union[paired_true, paired_pred]).sum()
paired_true = list(paired_true + 1) # index to instance ID
paired_pred = list(paired_pred + 1)
# add all unpaired GT and Prediction into the union
unpaired_true = np.array(
[idx for idx in true_id_list[1:] if idx not in paired_true]
)
unpaired_pred = np.array(
[idx for idx in pred_id_list[1:] if idx not in paired_pred]
)
for true_id in unpaired_true:
overall_union += true_masks[true_id].sum()
for pred_id in unpaired_pred:
overall_union += pred_masks[pred_id].sum()
aji_score = overall_inter / overall_union
return aji_score
#####
def get_fast_aji_plus(true, pred):
"""AJI+, an AJI version with maximal unique pairing to obtain overall intersecion.
Every prediction instance is paired with at most 1 GT instance (1 to 1) mapping, unlike AJI
where a prediction instance can be paired against many GT instances (1 to many).
Remaining unpaired GT and Prediction instances will be added to the overall union.
The 1 to 1 mapping prevents AJI's over-penalisation from happening.
Fast computation requires instance IDs are in contiguous orderding i.e [1, 2, 3, 4]
not [2, 3, 6, 10]. Please call `remap_label` before hand and `by_size` flag has no
effect on the result.
"""
true = np.copy(true) # ? do we need this
pred = np.copy(pred)
true_id_list = list(np.unique(true))
pred_id_list = list(np.unique(pred))
true_masks = [
None,
]
for t in true_id_list[1:]:
t_mask = np.array(true == t, np.uint8)
true_masks.append(t_mask)
pred_masks = [
None,
]
for p in pred_id_list[1:]:
p_mask = np.array(pred == p, np.uint8)
pred_masks.append(p_mask)
# prefill with value
pairwise_inter = np.zeros(
[len(true_id_list) - 1, len(pred_id_list) - 1], dtype=np.float64
)
pairwise_union = np.zeros(
[len(true_id_list) - 1, len(pred_id_list) - 1], dtype=np.float64
)
# caching pairwise
for true_id in true_id_list[1:]: # 0-th is background
t_mask = true_masks[true_id]
pred_true_overlap = pred[t_mask > 0]
pred_true_overlap_id = np.unique(pred_true_overlap)
pred_true_overlap_id = list(pred_true_overlap_id)
for pred_id in pred_true_overlap_id:
if pred_id == 0: # ignore
continue # overlaping background
p_mask = pred_masks[pred_id]
total = (t_mask + p_mask).sum()
inter = (t_mask * p_mask).sum()
pairwise_inter[true_id - 1, pred_id - 1] = inter
pairwise_union[true_id - 1, pred_id - 1] = total - inter
#
pairwise_iou = pairwise_inter / (pairwise_union + 1.0e-6)
#### Munkres pairing to find maximal unique pairing
paired_true, paired_pred = linear_sum_assignment(-pairwise_iou)
### extract the paired cost and remove invalid pair
paired_iou = pairwise_iou[paired_true, paired_pred]
# now select all those paired with iou != 0.0 i.e have intersection
paired_true = paired_true[paired_iou > 0.0]
paired_pred = paired_pred[paired_iou > 0.0]
paired_inter = pairwise_inter[paired_true, paired_pred]
paired_union = pairwise_union[paired_true, paired_pred]
paired_true = list(paired_true + 1) # index to instance ID
paired_pred = list(paired_pred + 1)
overall_inter = paired_inter.sum()
overall_union = paired_union.sum()
# add all unpaired GT and Prediction into the union
unpaired_true = np.array(
[idx for idx in true_id_list[1:] if idx not in paired_true]
)
unpaired_pred = np.array(
[idx for idx in pred_id_list[1:] if idx not in paired_pred]
)
for true_id in unpaired_true:
overall_union += true_masks[true_id].sum()
for pred_id in unpaired_pred:
overall_union += pred_masks[pred_id].sum()
#
aji_score = overall_inter / overall_union
return aji_score
#####
def get_fast_pq(true, pred, match_iou=0.5):
"""`match_iou` is the IoU threshold level to determine the pairing between
GT instances `p` and prediction instances `g`. `p` and `g` is a pair
if IoU > `match_iou`. However, pair of `p` and `g` must be unique
(1 prediction instance to 1 GT instance mapping).
If `match_iou` < 0.5, Munkres assignment (solving minimum weight matching
in bipartite graphs) is caculated to find the maximal amount of unique pairing.
If `match_iou` >= 0.5, all IoU(p,g) > 0.5 pairing is proven to be unique and
the number of pairs is also maximal.
Fast computation requires instance IDs are in contiguous orderding
i.e [1, 2, 3, 4] not [2, 3, 6, 10]. Please call `remap_label` beforehand
and `by_size` flag has no effect on the result.
Returns:
[dq, sq, pq]: measurement statistic
[paired_true, paired_pred, unpaired_true, unpaired_pred]:
pairing information to perform measurement
"""
assert match_iou >= 0.0, "Cant' be negative"
true = np.copy(true)
pred = np.copy(pred)
true_id_list = list(np.unique(true))
pred_id_list = list(np.unique(pred))
true_masks = [
None,
]
for t in true_id_list[1:]:
t_mask = np.array(true == t, np.uint8)
true_masks.append(t_mask)
pred_masks = [
None,
]
for p in pred_id_list[1:]:
p_mask = np.array(pred == p, np.uint8)
pred_masks.append(p_mask)
# prefill with value
pairwise_iou = np.zeros(
[len(true_id_list) - 1, len(pred_id_list) - 1], dtype=np.float64
)
# caching pairwise iou
for true_id in true_id_list[1:]: # 0-th is background
t_mask = true_masks[true_id]
pred_true_overlap = pred[t_mask > 0]
pred_true_overlap_id = np.unique(pred_true_overlap)
pred_true_overlap_id = list(pred_true_overlap_id)
for pred_id in pred_true_overlap_id:
if pred_id == 0: # ignore
continue # overlaping background
p_mask = pred_masks[pred_id]
total = (t_mask + p_mask).sum()
inter = (t_mask * p_mask).sum()
iou = inter / (total - inter)
pairwise_iou[true_id - 1, pred_id - 1] = iou
#
if match_iou >= 0.5:
paired_iou = pairwise_iou[pairwise_iou > match_iou]
pairwise_iou[pairwise_iou <= match_iou] = 0.0
paired_true, paired_pred = np.nonzero(pairwise_iou)
paired_iou = pairwise_iou[paired_true, paired_pred]
paired_true += 1 # index is instance id - 1
paired_pred += 1 # hence return back to original
else: # * Exhaustive maximal unique pairing
#### Munkres pairing with scipy library
# the algorithm return (row indices, matched column indices)
# if there is multiple same cost in a row, index of first occurence
# is return, thus the unique pairing is ensure
# inverse pair to get high IoU as minimum
paired_true, paired_pred = linear_sum_assignment(-pairwise_iou)
### extract the paired cost and remove invalid pair
paired_iou = pairwise_iou[paired_true, paired_pred]
# now select those above threshold level
# paired with iou = 0.0 i.e no intersection => FP or FN
paired_true = list(paired_true[paired_iou > match_iou] + 1)
paired_pred = list(paired_pred[paired_iou > match_iou] + 1)
paired_iou = paired_iou[paired_iou > match_iou]
# get the actual FP and FN
unpaired_true = [idx for idx in true_id_list[1:] if idx not in paired_true]
unpaired_pred = [idx for idx in pred_id_list[1:] if idx not in paired_pred]
# print(paired_iou.shape, paired_true.shape, len(unpaired_true), len(unpaired_pred))
#
tp = len(paired_true)
fp = len(unpaired_pred)
fn = len(unpaired_true)
# get the F1-score i.e DQ
dq = tp / (tp + 0.5 * fp + 0.5 * fn)
# get the SQ, no paired has 0 iou so not impact
sq = paired_iou.sum() / (tp + 1.0e-6)
return [dq, sq, dq * sq], [paired_true, paired_pred, unpaired_true, unpaired_pred]
#####
def get_fast_dice_2(true, pred):
"""Ensemble dice."""
true = np.copy(true)
pred = np.copy(pred)
true_id = list(np.unique(true))
pred_id = list(np.unique(pred))
overall_total = 0
overall_inter = 0
true_masks = [np.zeros(true.shape)]
for t in true_id[1:]:
t_mask = np.array(true == t, np.uint8)
true_masks.append(t_mask)
pred_masks = [np.zeros(true.shape)]
for p in pred_id[1:]:
p_mask = np.array(pred == p, np.uint8)
pred_masks.append(p_mask)
for true_idx in range(1, len(true_id)):
t_mask = true_masks[true_idx]
pred_true_overlap = pred[t_mask > 0]
pred_true_overlap_id = np.unique(pred_true_overlap)
pred_true_overlap_id = list(pred_true_overlap_id)
try: # blinly remove background
pred_true_overlap_id.remove(0)
except ValueError:
pass # just mean no background
for pred_idx in pred_true_overlap_id:
p_mask = pred_masks[pred_idx]
total = (t_mask + p_mask).sum()
inter = (t_mask * p_mask).sum()
overall_total += total
overall_inter += inter
return 2 * overall_inter / overall_total
#####--------------------------As pseudocode
def get_dice_1(true, pred):
"""Traditional dice."""
# cast to binary 1st
true = np.copy(true)
pred = np.copy(pred)
true[true > 0] = 1
pred[pred > 0] = 1
inter = true * pred
denom = true + pred
return 2.0 * np.sum(inter) / np.sum(denom)
####
def get_dice_2(true, pred):
"""Ensemble Dice as used in Computational Precision Medicine Challenge."""
true = np.copy(true)
pred = np.copy(pred)
true_id = list(np.unique(true))
pred_id = list(np.unique(pred))
# remove background aka id 0
true_id.remove(0)
pred_id.remove(0)
total_markup = 0
total_intersect = 0
for t in true_id:
t_mask = np.array(true == t, np.uint8)
for p in pred_id:
p_mask = np.array(pred == p, np.uint8)
intersect = p_mask * t_mask
if intersect.sum() > 0:
total_intersect += intersect.sum()
total_markup += t_mask.sum() + p_mask.sum()
return 2 * total_intersect / total_markup
#####
def remap_label(pred, by_size=False):
"""Rename all instance id so that the id is contiguous i.e [0, 1, 2, 3]
not [0, 2, 4, 6]. The ordering of instances (which one comes first)
is preserved unless by_size=True, then the instances will be reordered
so that bigger nucler has smaller ID.
Args:
pred : the 2d array contain instances where each instances is marked
by non-zero integer
by_size : renaming with larger nuclei has smaller id (on-top)
"""
pred_id = list(np.unique(pred))
pred_id.remove(0)
if len(pred_id) == 0:
return pred # no label
if by_size:
pred_size = []
for inst_id in pred_id:
size = (pred == inst_id).sum()
pred_size.append(size)
# sort the id by size in descending order
pair_list = zip(pred_id, pred_size)
pair_list = sorted(pair_list, key=lambda x: x[1], reverse=True)
pred_id, pred_size = zip(*pair_list)
new_pred = np.zeros(pred.shape, np.int32)
for idx, inst_id in enumerate(pred_id):
new_pred[pred == inst_id] = idx + 1
return new_pred
#####
def pair_coordinates(setA, setB, radius):
"""Use the Munkres or Kuhn-Munkres algorithm to find the most optimal
unique pairing (largest possible match) when pairing points in set B
against points in set A, using distance as cost function.
Args:
setA, setB: np.array (float32) of size Nx2 contains the of XY coordinate
of N different points
radius: valid area around a point in setA to consider
a given coordinate in setB a candidate for match
Return:
pairing: pairing is an array of indices
where point at index pairing[0] in set A paired with point
in set B at index pairing[1]
unparedA, unpairedB: remaining poitn in set A and set B unpaired
"""
# * Euclidean distance as the cost matrix
pair_distance = scipy.spatial.distance.cdist(setA, setB, metric='euclidean')
# * Munkres pairing with scipy library
# the algorithm return (row indices, matched column indices)
# if there is multiple same cost in a row, index of first occurence
# is return, thus the unique pairing is ensured
indicesA, paired_indicesB = linear_sum_assignment(pair_distance)
# extract the paired cost and remove instances
# outside of designated radius
pair_cost = pair_distance[indicesA, paired_indicesB]
pairedA = indicesA[pair_cost <= radius]
pairedB = paired_indicesB[pair_cost <= radius]
pairing = np.concatenate([pairedA[:,None], pairedB[:,None]], axis=-1)
unpairedA = np.delete(np.arange(setA.shape[0]), pairedA)
unpairedB = np.delete(np.arange(setB.shape[0]), pairedB)
return pairing, unpairedA, unpairedB