forked from GoogleCloudPlatform/python-docs-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquickstart_beta.py
62 lines (49 loc) · 2.22 KB
/
quickstart_beta.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# Copyright 2020 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# [START documentai_quickstart_beta]
from google.cloud import documentai_v1beta2 as documentai
def main(project_id='YOUR_PROJECT_ID',
input_uri='gs://cloud-samples-data/documentai/invoice.pdf'):
"""Process a single document with the Document AI API, including
text extraction and entity extraction."""
client = documentai.DocumentUnderstandingServiceClient()
gcs_source = documentai.types.GcsSource(uri=input_uri)
# mime_type can be application/pdf, image/tiff,
# and image/gif, or application/json
input_config = documentai.types.InputConfig(
gcs_source=gcs_source, mime_type='application/pdf')
# Location can be 'us' or 'eu'
parent = 'projects/{}/locations/us'.format(project_id)
request = documentai.types.ProcessDocumentRequest(
parent=parent,
input_config=input_config)
document = client.process_document(request=request)
# All text extracted from the document
print('Document Text: {}'.format(document.text))
def _get_text(el):
"""Convert text offset indexes into text snippets.
"""
response = ''
# If a text segment spans several lines, it will
# be stored in different text segments.
for segment in el.text_anchor.text_segments:
start_index = segment.start_index
end_index = segment.end_index
response += document.text[start_index:end_index]
return response
for entity in document.entities:
print('Entity type: {}'.format(entity.type))
print('Text: {}'.format(_get_text(entity)))
print('Mention text: {}\n'.format(entity.mention_text))
# [END documentai_quickstart_beta]