-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain.py
575 lines (499 loc) · 25.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
import os
import yaml
import time
from datetime import datetime
import shutil
import torch
import random
import argparse
import numpy as np
import logging
from tensorboardX import SummaryWriter
from tqdm import tqdm
from torch.utils import data
from ptsemseg.models import get_model
from ptsemseg.loss import get_loss_function
from ptsemseg.loader import get_loader
from ptsemseg.utils import get_logger
from ptsemseg.metrics import runningScore, averageMeter, running_side_score
from ptsemseg.augmentations import get_composed_augmentations
from ptsemseg.schedulers import get_scheduler
from ptsemseg.optimizers import get_optimizer
# Set this to True to increase training speed in PyTorch 1.0 by around x3
# However, it might need more storage on the GPU
# from torch.backends import cudnn
torch.backends.cudnn.benchmark = True
# Set maximum number of validation samples to add to summaries
NUM_IMG_SAMPLES = 3
def train(cfg, writer, logger):
# Setup random seeds
torch.manual_seed(cfg.get('seed', 1860))
torch.cuda.manual_seed(cfg.get('seed', 1860))
np.random.seed(cfg.get('seed', 1860))
random.seed(cfg.get('seed', 1860))
# Setup device
if cfg["device"]["use_gpu"]:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if not torch.cuda.is_available():
logger.warning("CUDA not available, using CPU instead!")
else:
device = torch.device("cpu")
# Setup augmentations
augmentations = cfg['training'].get('augmentations', None)
data_aug = get_composed_augmentations(augmentations)
if "rcrop" in augmentations.keys():
data_aug_val = get_composed_augmentations({"rcrop": augmentations["rcrop"]})
# Setup dataloader
data_loader = get_loader(cfg['data']['dataset'])
data_path = cfg['data']['path']
if 'depth_scaling' not in cfg['data'].keys():
cfg['data']['depth_scaling'] = None
if 'max_depth' not in cfg['data'].keys():
logger.warning("Key d_max not found in configuration file! Using default value")
cfg['data']['max_depth'] = 256
if 'min_depth' not in cfg['data'].keys():
logger.warning("Key d_min not found in configuration file! Using default value")
cfg['data']['min_depth'] = 1
t_loader = data_loader(
data_path,
is_transform=True,
split=cfg['data']['train_split'],
img_size=(cfg['data']['img_rows'], cfg['data']['img_cols']),
augmentations=data_aug,
depth_scaling=cfg['data']['depth_scaling'],
n_bins=cfg['data']['depth_bins'],
max_depth=cfg['data']['max_depth'],
min_depth=cfg['data']['min_depth'])
v_loader = data_loader(
data_path,
is_transform=True,
split=cfg['data']['val_split'],
img_size=(cfg['data']['img_rows'], cfg['data']['img_cols']),
augmentations=data_aug_val,
depth_scaling=cfg['data']['depth_scaling'],
n_bins=cfg['data']['depth_bins'],
max_depth=cfg['data']['max_depth'],
min_depth=cfg['data']['min_depth'])
trainloader = data.DataLoader(t_loader,
batch_size=cfg['training']['batch_size'],
num_workers=cfg['training']['n_workers'],
shuffle=True,
drop_last=True)
valloader = data.DataLoader(v_loader,
batch_size=cfg['validation']['batch_size'],
num_workers=cfg['validation']['n_workers'],
shuffle=True,
drop_last=True)
# Check selected tasks
if sum(cfg["data"]["tasks"].values()) > 1:
logger.info("Running multi-task training with config: {}".format(
cfg["data"]["tasks"]))
# Get output dimension of the network's final layer
n_classes_d_cls = None
if cfg["data"]["tasks"]["d_cls"]:
n_classes_d_cls = t_loader.n_classes_d_cls
# Setup metrics for validation
if cfg["data"]["tasks"]["d_cls"]:
running_metrics_val_d_cls = runningScore(n_classes_d_cls)
if cfg["data"]["tasks"]["d_reg"]:
running_metrics_val_d_reg = running_side_score()
# Setup model
model = get_model(cfg['model'],
cfg["data"]["tasks"],
n_classes_d_cls=n_classes_d_cls).to(device)
# model = d_regResNet().to(device)
# Setup multi-GPU support
n_gpus = torch.cuda.device_count()
if n_gpus > 1:
logger.info("Running multi-gpu training on {} GPUs".format(n_gpus))
model = torch.nn.DataParallel(model, device_ids=range(n_gpus))
# Setup multi-task loss
task_weights = {}
update_weights = True if \
cfg["training"]["task_weight_policy"] == 'update' else False
for task, weight in cfg["training"]["task_weight_init"].items():
task_weights[task] = torch.tensor(weight).float()
task_weights[task] = task_weights[task].to(device)
task_weights[task] = task_weights[task].requires_grad_(update_weights)
logger.info("Task weights were initialized with {}".format(
cfg["training"]["task_weight_init"]))
# Setup optimizer and lr_scheduler
optimizer_cls = get_optimizer(cfg)
optimizer_params = {k: v for k, v in cfg['training']['optimizer'].items()
if k != 'name'}
objective_params = list(model.parameters()) + list(task_weights.values())
optimizer = optimizer_cls(objective_params, **optimizer_params)
logger.info("Using optimizer {}".format(optimizer))
scheduler = get_scheduler(optimizer, cfg['training']['lr_schedule'])
logger.info("Using learning-rate scheduler {}".format(scheduler))
# Setup task-specific loss functions
# logger.debug("setting loss functions")
loss_fns = {}
for task, selected in cfg["data"]["tasks"].items():
if selected:
logger.info("Task " + task + " was selected for training.")
loss_fn = get_loss_function(cfg, task)
logger.info("Using loss function {} for task {}".format(
loss_fn, task))
loss_fns[task] = loss_fn
# Load weights from old checkpoint if set
# logger.debug("checking for resume checkpoint")
start_iter = 0
if cfg['training']['resume'] is not None:
if os.path.isfile(cfg['training']['resume']):
logger.info("Loading model and optimizer from checkpoint '{}'"
.format(cfg['training']['resume']))
logger.info("Loading file...")
checkpoint = torch.load(cfg['training']['resume'], map_location="cpu")
logger.info("Loading model...")
model.load_state_dict(checkpoint["model_state"])
model.to("cpu")
model.to(device)
logger.info("Restoring task weights...")
task_weights = checkpoint["task_weights"]
for task, state in task_weights.items():
# task_weights[task] = state.to(device)
task_weights[task] = torch.tensor(state.data).float()
task_weights[task] = task_weights[task].to(device)
task_weights[task] = task_weights[task].requires_grad_(update_weights)
logger.info("Loading scheduler...")
scheduler.load_state_dict(checkpoint["scheduler_state"])
# scheduler.to("cpu")
start_iter = checkpoint["iteration"]
# Add loaded parameters to optimizer
# NOTE task_weights will not update otherwise!
logger.info("Loading optimizer...")
optimizer_cls = get_optimizer(cfg)
objective_params = list(model.parameters()) + \
list(task_weights.values())
optimizer = optimizer_cls(objective_params, **optimizer_params)
optimizer.load_state_dict(checkpoint["optimizer_state"])
# for state in optimizer.state.values():
# for k, v in state.items():
# if torch.is_tensor(v):
# state[k] = v.to(device)
logger.info(
"Loaded checkpoint '{}' (iter {})".format(
cfg['training']['resume'], checkpoint["iteration"]
)
)
else:
logger.error("No checkpoint found at '{}'. Re-initializing params!"
.format(cfg['training']['resume']))
# Initialize meters for various metrics
# logger.debug("initializing metrics")
val_loss_meter = averageMeter()
time_meter = averageMeter()
# Setup other utility variables
i = start_iter
flag = True
timer_training_start = time.time()
logger.info("Starting training phase...")
logger.debug("model device cuda?")
logger.debug(next(model.parameters()).is_cuda)
logger.debug("d_reg weight device:")
logger.debug(task_weights["d_reg"].device)
logger.debug("cls weight device:")
logger.debug(task_weights["d_cls"].device)
while i <= cfg['training']['train_iters'] and flag:
for (images, labels) in trainloader:
start_ts = time.time()
scheduler.step()
model.train()
# Forward pass
# logger.debug("sending images to device")
images = images.to(device)
optimizer.zero_grad()
# logger.debug("forward pass")
outputs = model(images)
# Clip predicted depth to min/max
# logger.debug("clamping outputs")
if cfg["data"]["tasks"]["d_reg"]:
if cfg["data"]["depth_scaling"] is not None:
if cfg["data"]["depth_scaling"] == "clip":
logger.warning("Using deprecated clip function!")
outputs["d_reg"] = torch.clamp(outputs["d_reg"], 0, cfg["data"]["max_depth"])
# Calculate single-task losses
# logger.debug("calculate loss")
st_loss = {}
for task, loss_fn in loss_fns.items():
labels[task] = labels[task].to(device)
st_loss[task] = loss_fn(input=outputs[task],
target=labels[task])
# Calculate multi-task loss
# logger.debug("calculate mt loss")
mt_loss = 0
if len(st_loss) > 1:
for task, loss in st_loss.items():
s = task_weights[task] # s := log(sigma^2)
r = s * 0.5 # regularization term
if task in ["d_cls"]:
w = torch.exp(-s) # weighting (class.)
elif task in ["d_reg"]:
w = 0.5 * torch.exp(-s) # weighting (regr.)
else:
raise ValueError("Weighting not implemented!")
mt_loss += loss * w + r
else:
mt_loss = list(st_loss.values())[0]
# Backward pass
# logger.debug("backward pass")
mt_loss.backward()
# logger.debug("update weights")
optimizer.step()
time_meter.update(time.time() - start_ts)
# Output current training status
# logger.debug("write log")
if i == 0 or (i + 1) % cfg['training']['print_interval'] == 0:
pad = str(len(str(cfg['training']['train_iters'])))
print_str = ("Training Iteration: [{:>" + pad + "d}/{:d}]"
+ " Loss: {:>14.4f}"
+ " Time/Image: {:>7.4f}").format(
i + 1,
cfg['training']['train_iters'],
mt_loss.item(),
time_meter.avg / cfg['training']['batch_size'])
logger.info(print_str)
# Add training status to summaries
writer.add_scalar('learning_rate',
scheduler.get_lr()[0],
i + 1)
writer.add_scalar('batch_size',
cfg['training']['batch_size'],
i + 1)
writer.add_scalar('loss/train_loss', mt_loss.item(), i + 1)
for task, loss in st_loss.items():
writer.add_scalar("loss/single_task/" + task, loss, i + 1)
for task, weight in task_weights.items():
writer.add_scalar("task_weights/" + task, weight, i + 1)
time_meter.reset()
# Add latest input image to summaries
train_input = images[0].cpu().numpy()[::-1, :, :]
writer.add_image("training/input", train_input, i + 1)
# Add d_cls predictions and gt for latest sample to summaries
if cfg["data"]["tasks"]["d_cls"]:
train_pred = outputs["d_cls"].detach().cpu().numpy().max(0)[1].astype(np.uint8)
# train_pred = np.array(outputs["d_cls"][0].data.max(0)[1],
# dtype=np.uint8)
train_pred = t_loader.decode_segmap(train_pred)
train_pred = torch.tensor(np.rollaxis(train_pred, 2, 0))
writer.add_image("training/d_cls/prediction",
train_pred,
i + 1)
train_gt = t_loader.decode_segmap(
labels["d_cls"][0].data.cpu().numpy())
train_gt = torch.tensor(np.rollaxis(train_gt, 2, 0))
writer.add_image("training/d_cls/label", train_gt, i + 1)
# Add d_reg predictions and gt for latest sample to summaries
if cfg["data"]["tasks"]["d_reg"]:
train_pred = outputs["d_reg"][0]
train_pred = np.array(train_pred.data.cpu().numpy())
train_pred = t_loader.visualize_depths(
t_loader.restore_metric_depths(train_pred))
writer.add_image("training/d_reg/prediction",
train_pred,
i + 1)
train_gt = labels["d_reg"][0].data.cpu().numpy()
train_gt = t_loader.visualize_depths(
t_loader.restore_metric_depths(train_gt))
if len(train_gt.shape) < 3:
train_gt = np.expand_dims(train_gt, axis=0)
writer.add_image("training/d_reg/label", train_gt, i + 1)
# Run mid-training validation
if (i + 1) % cfg['training']['val_interval'] == 0:
# or (i + 1) == cfg['training']['train_iters']:
# Output current status
# logger.debug("Training phase took " + str(timedelta(seconds=time.time() - timer_training_start)))
timer_validation_start = time.time()
logger.info("Validating model at training iteration"
+ " {}...".format(i + 1))
# Evaluate validation set
model.eval()
with torch.no_grad():
i_val = 0
pbar = tqdm(total=len(valloader), unit="batch")
for (images_val, labels_val) in valloader:
# Forward pass
images_val = images_val.to(device)
outputs_val = model(images_val)
# Clip predicted depth to min/max
if cfg["data"]["tasks"]["d_reg"]:
if cfg["data"]["depth_scaling"] is None:
logger.warning("Using deprecated clip function!")
outputs_val["d_reg"] = torch.clamp(outputs_val["d_reg"],
0, cfg["data"]["max_depth"])
else:
outputs_val["d_reg"] = torch.clamp(outputs_val["d_reg"],
0, 1)
# Calculate single-task losses
st_loss_val = {}
for task, loss_fn in loss_fns.items():
labels_val[task] = labels_val[task].to(device)
st_loss_val[task] = loss_fn(
input=outputs_val[task],
target=labels_val[task])
# Calculate multi-task loss
mt_loss_val = 0
if len(st_loss) > 1:
for task, loss_val in st_loss_val.items():
s = task_weights[task]
r = s * 0.5
if task in ["d_cls"]:
w = torch.exp(-s)
elif task in ["d_reg"]:
w = 0.5 * torch.exp(-s)
else:
raise ValueError("Weighting not implemented!")
mt_loss_val += loss_val * w + r
else:
mt_loss_val = list(st_loss.values())[0]
# Accumulate metrics for summaries
val_loss_meter.update(mt_loss_val.item())
if cfg["data"]["tasks"]["d_cls"]:
running_metrics_val_d_cls.update(
labels_val["d_cls"].data.cpu().numpy(),
outputs_val["d_cls"].data.cpu().numpy().argmax(1))
if cfg["data"]["tasks"]["d_reg"]:
running_metrics_val_d_reg.update(
v_loader.restore_metric_depths(
outputs_val["d_reg"].data.cpu().numpy()),
v_loader.restore_metric_depths(
labels_val["d_reg"].data.cpu().numpy()))
# Update progressbar
i_val += 1
pbar.update()
# Stop validation early if max_iter key is set
if "max_iter" in cfg["validation"].keys() and \
i_val >= cfg["validation"]["max_iter"]:
logger.warning("Stopped validation early "
+ "because max_iter was reached")
break
# Add sample input images from latest batch to summaries
num_img_samples_val = min(len(images_val), NUM_IMG_SAMPLES)
for cur_s in range(0, num_img_samples_val):
val_input = images_val[cur_s].cpu().numpy()[::-1, :, :]
writer.add_image("validation_sample_" + str(cur_s + 1)
+ "/input", val_input, i + 1)
# Add predictions/ground-truth for d_cls to summaries
if cfg["data"]["tasks"]["d_cls"]:
val_pred = outputs_val["d_cls"][cur_s].data.max(0)[1]
val_pred = np.array(val_pred, dtype=np.uint8)
val_pred = t_loader.decode_segmap(val_pred)
val_pred = torch.tensor(np.rollaxis(val_pred, 2, 0))
writer.add_image("validation_sample_" + str(cur_s + 1)
+ "/prediction_d_cls",
val_pred,
i + 1)
val_gt = t_loader.decode_segmap(
labels_val["d_cls"][cur_s].data.cpu().numpy())
val_gt = torch.tensor(np.rollaxis(val_gt, 2, 0))
writer.add_image("validation_sample_" + str(cur_s + 1)
+ "/label_d_cls",
val_gt,
i + 1)
# Add predictions/ground-truth for d_reg to summaries
if cfg["data"]["tasks"]["d_reg"]:
val_pred = outputs_val["d_reg"][cur_s].cpu().numpy()
val_pred = v_loader.visualize_depths(
v_loader.restore_metric_depths(val_pred))
writer.add_image("validation_sample_" + str(cur_s + 1)
+ "/prediction_d_reg",
val_pred,
i + 1)
val_gt = labels_val["d_reg"][cur_s].data.cpu().numpy()
val_gt = v_loader.visualize_depths(
v_loader.restore_metric_depths(val_gt))
if len(val_gt.shape) < 3:
val_gt = np.expand_dims(val_gt, axis=0)
writer.add_image("validation_sample_" + str(cur_s + 1)
+ "/label_d_reg",
val_gt,
i + 1)
# Add evaluation metrics for d_cls predictions to summaries
if cfg["data"]["tasks"]["d_cls"]:
score, class_iou = running_metrics_val_d_cls.get_scores()
for k, v in score.items():
writer.add_scalar(
'validation/d_cls_metrics/{}'.format(k[:-3]),
v, i + 1)
for k, v in class_iou.items():
writer.add_scalar(
'validation/d_cls_metrics/class_{}'.format(k),
v, i + 1)
running_metrics_val_d_cls.reset()
# Add evaluation metrics for d_reg predictions to summaries
if cfg["data"]["tasks"]["d_reg"]:
writer.add_scalar('validation/d_reg_metrics/rel',
running_metrics_val_d_reg.rel,
i + 1)
running_metrics_val_d_reg.reset()
# Add validation loss to summaries
writer.add_scalar('loss/val_loss', val_loss_meter.avg, i + 1)
# Output current status
logger.info(("Validation Loss at Iteration {}: "
+ "{:>14.4f}").format(i + 1,
val_loss_meter.avg))
val_loss_meter.reset()
# logger.debug("Validation phase took {}".format(timedelta(seconds=time.time() - timer_validation_start)))
timer_training_start = time.time()
# Close progressbar
pbar.close()
# Save checkpoint
if (i + 1) % cfg['training']['checkpoint_interval'] == 0 or \
(i + 1) == cfg['training']['train_iters'] or \
i == 0:
state = {
"iteration": i + 1,
"model_state": model.state_dict(),
"task_weights": task_weights,
"optimizer_state": optimizer.state_dict(),
"scheduler_state": scheduler.state_dict()
}
save_path = os.path.join(writer.file_writer.get_logdir(),
"{}_{}_checkpoint_iter_".format(
cfg['model']['arch'],
cfg['data']['dataset'])
+ str(i + 1) + ".pkl")
torch.save(state, save_path)
logger.info("Saved checkpoint at iteration {} to: {}".format(
i + 1, save_path))
# Stop training if current iteration == max iterations
if (i + 1) == cfg['training']['train_iters']:
flag = False
break
i += 1
if __name__ == "__main__":
# Get config file from arguments and read it
parser = argparse.ArgumentParser(description="config")
parser.add_argument(
"--config",
nargs="?",
type=str,
default="configs/example_config.yml",
help="Configuration file to use"
)
args = parser.parse_args()
with open(args.config) as fp:
cfg = yaml.load(fp)
# Set logdir
if cfg["logging"]["log_name"] == "id":
run_id = random.randint(1, 100000)
log_name = str(run_id)
elif cfg["logging"]["log_name"] == "timestamp":
log_name = datetime.now().strftime("%Y_%m_%d_%H_%M_%S")
else:
log_name = cfg["logging"]["log_name"]
logdir = os.path.join(cfg["logging"]["log_dir"],
os.path.basename(args.config)[:-4], log_name)
writer = SummaryWriter(log_dir=logdir)
# Setup logger
log_lvls = {"debug": logging.DEBUG,
"info": logging.INFO,
"warning": logging.WARNING}
logger = get_logger(logdir, lvl=log_lvls[cfg["logging"]["log_level"]])
logger.info("Set logging level to " + str(logger.level))
logger.info("Saving logs and checkpoints to {}".format(logdir))
shutil.copy(args.config, logdir)
# Start training
logger.info('Starting training')
train(cfg, writer, logger)