-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
224 lines (189 loc) · 8.51 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import torch
import numpy as np
from args_parse import Args
from utils import make_model, load_model, generateParameters, SeqSetting
from dataloader import read_data, read_test_data
from train import train
from test import test_model, interval_plot
import random
import time
from torch.utils.data import DataLoader
from torch.utils.data import IterableDataset
from module import enrich_para
##
import pdb
if __name__ == '__main__':
## fix the random seeds
print('starts')
seed_num = 0
torch.manual_seed(seed_num)
random.seed(seed_num)
np.random.seed(seed_num)
#args = Args()
kwargs = Args().update_args()
print('Using device ', kwargs.device)
if kwargs.dataset == 'cylinder':
numT = 401
elif kwargs.dataset == 'vas2d':
numT = 250
elif kwargs.dataset == 'sine':
numT = 1000
elif kwargs.dataset == 'stBurgers':
numT = 401
elif kwargs.dataset == 'stinitial_stBurgers':
numT = 401
elif kwargs.dataset == 'testsmallstBurgers':
numT = 401*2
elif kwargs.dataset == 'gluon_test':
numT = 401
elif kwargs.dataset == 'mvw':
numT = 40
elif kwargs.dataset == 'les2d':
numT = 240
elif kwargs.dataset == 'les2d30':
numT = 240
#numT = 120
else:
raise TypeError('Only cylinder and sine and stBurgers are supported')
#pdb.set_trace()
# input_size, num_layers, hidden_size, num_cells, dropout_rate,n_blocks, n_hidden, prediction_step, mu_size,device="cuda:0"
#config = SeqSetting()
#model = make_model(kwargs.input_size, kwargs.num_layers, kwargs.hidden_size, kwargs.num_cells, kwargs.dropout_rate, kwargs.n_blocks, kwargs.n_hidden, kwargs.mu_size, adj_var = kwargs.adj_var, device = kwargs.device, conditioning_length= kwargs.conditioning_length,
#config = config) #TODO: FINISH IT
model = make_model(kwargs.input_size, kwargs.num_layers, kwargs.hidden_size, kwargs.num_cells, kwargs.dropout_rate, kwargs.n_blocks, kwargs.n_hidden, kwargs.mu_size, adj_var = kwargs.adj_var, device = kwargs.device, conditioning_length= kwargs.conditioning_length,
num_heads = kwargs.num_heads, dim_feedforward_scale = kwargs.dim_feedforward_scale,
num_encoder_layers = kwargs.num_encoder_layers, num_decoder_layers = kwargs.num_decoder_layers, mask_length = int(numT-1-kwargs.startT), d_model = kwargs.d_model)
if kwargs.transfer_flag == 1:
print('\n')
print('load_transfer epoch ', kwargs.transfer_epoch)
print('\n')
time.sleep(2)
## the first 15 characters are transferXXXXXX_, for trasnfer learning, we set 10 times lower lr and
## batch 1 for fine tuning
savedir = 'saved_model/para_'+str(kwargs.modelref)[15:]+'/'
model.load_state_dict(torch.load(savedir+"model_"+str(kwargs.transfer_epoch)))
if kwargs.train == 1:
print('training dataset')
filePath = "data/"+str(kwargs.dataset)+"_noise"+str(kwargs.noise)+"_dataSave.txt"
#pdb.set_trace()
###
###
elif kwargs.train == 0:
print('test dataset')
filePath = "data/test_"+str(kwargs.dataset)+"_noise"+str(kwargs.noise)+"_dataSave.txt"
if kwargs.dataset != 'gluon_test':
dataAll = read_data(path=filePath, device = kwargs.device)
#pdb.set_trace()
##
'''
### only use the first case
dataDouble = dataAll[:401*2,:]
np.savez('data/DoubleData.npz', dataDouble= dataDouble.cpu().detach().numpy())
pdb.set_trace()
'''
'''
testData = np.load('data/DoubleData.npz')
dataAll = torch.from_numpy(testData['dataDouble']).to(kwargs.device).float()
#pdb.set_trace()
## only learn 1 spatial points
dataAll = dataAll[:,0:10]
#pdb.set_trace()
'''
###
else:
datalist = read_test_data(device = kwargs.device)
#pdb.set_trace()
print('shape of all the data is', dataAll.shape)
time.sleep(2)
## paradata
#pdb.set_trace()
if kwargs.dataset != 'gluon_test':
data = []
#pdb.set_trace()
for i in range(kwargs.mu_size):
#for i in range(int(dataAll.shape[0]/numT)):
tmp = dataAll[i*numT:(i+1)*numT].unsqueeze(0)
data.append(tmp)
data = torch.cat(data, dim = 0)
## let the data start from some point
data = data[:,kwargs.startT:,:]
#pdb.set_trace()
print('size of data before is', data.shape)
# ## pick every 2 cases
# shape0 = 2*kwargs.mu_size
# data = data[range(1,shape0,2),:]
print('size of data is', data.shape)
#pdb.set_trace()
## normalize data
mean_d = data.mean(dim = (1,2), keepdim = True)
std_d = data.std(dim = (1,2), keepdim = True)
#pdb.set_trace()
data = (data-mean_d)/std_d
##
#pdb.set_trace()
print('data is normalized, shape is', data.shape)
print('\n')
time.sleep(1.5)
##
else:
dataset = IterableDataset(datalist)
data = DataLoader(datalist, batch_size = kwargs.batchsize)
#temp1 = next(iter(data))
for k,v in (next(iter(data))).items():
print(k+' shape is', v.shape)
#pdb.set_trace()
#data=data[0:400].unsqueeze(0)
## select parameters
#pdb.set_trace()
print('----------------data loaded for case "'+str(kwargs.dataset)+'"-------------')
print('------------- lr rate is----------------'+str(kwargs.lr))
optimizer = torch.optim.Adam(model.parameters(), lr=kwargs.lr)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
step_size = 1.0,
gamma =1.0)
para_mu = generateParameters(kwargs.dataset, kwargs.mu_size, kwargs.device, token = kwargs.token, train_flag = kwargs.train)
if kwargs.token == True:
print('with token')
paraOI = enrich_para(para_mu)
elif kwargs.token == False:
print('no token')
paraOI = None
#datatuple = {'paraOI':paraOI, 'data':data}
##
## paraOI [b,6], data[b,T,c]
##
if kwargs.token == True:
datatuple = [(paraOI[i], data[i]) for i in range(len(paraOI))]
elif kwargs.token == False:
datatuple = data
#pdb.set_trace()
#dataloader = DataLoader(datatuple, batch_size=kwargs.batchsize,shuffle=True,num_workers = 0,drop_last = True )
print('shuffle flag is', kwargs.shuffle)
dataloader = DataLoader(datatuple, batch_size=kwargs.batchsize,shuffle=kwargs.shuffle,num_workers = 0,drop_last = True )
#pdb.set_trace()
if kwargs.train == 1:
#para_mu = generateParameters(kwargs.dataset, kwargs.mu_size, kwargs.device, token = kwargs.token)
#pdb.set_trace()
##
print('----------------training start-------------')
start = time.time()
train(dataloader, model, kwargs.epoch, optimizer, modelref = kwargs.modelref, scheduler = scheduler)
print('----------------training end-------------')
print('elapse time is ',time.time()-start)
elif kwargs.train== 0:
print('----------------test start-------------')
#pdb.set_trace()
model = load_model(model, 'saved_model/para_'+str(kwargs.modelref)+'/model_'+str(kwargs.test_epoch))
#model = load_model(model, 'saved_model/'+str(kwargs.modelref)+'/model_'+str(kwargs.test_epoch))
#x=data[:,0].unsqueeze(1)
x = data[:, :kwargs.history_length]
#pdb.set_trace()
endidx= min(data.shape[1], kwargs.history_length+kwargs.prediction_length)
ground=data[:,kwargs.history_length:endidx]
#try:
#interval_plot(kwargs.modelref, x, ground, kwargs.test_epoch, test_samples = kwargs.test_samples, caseName = kwargs.dataset, prediction_length = kwargs.prediction_length, history_length = kwargs.history_length,sample_flag = kwargs.sample_flag)
#except:
test_model(model, x, kwargs.history_length,kwargs.prediction_length, ground, caseName = kwargs.dataset, epoch = kwargs.test_epoch, test_samples = kwargs.test_samples, modelref = kwargs.modelref, paraOI = paraOI, sample_flag = kwargs.sample_flag)
interval_plot(kwargs.modelref, x, ground, kwargs.test_epoch, test_samples = kwargs.test_samples, caseName = kwargs.dataset, prediction_length = kwargs.prediction_length, history_length = kwargs.history_length,sample_flag = kwargs.sample_flag)
print('----------------test finish-------------')
#test()