forked from ruppysuppy/Daily-Coding-Problem-Solutions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
156.py
35 lines (24 loc) · 796 Bytes
/
156.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
"""
Problem:
Given a positive integer n, find the smallest number of squared integers which sum to n.
For example, given n = 13, return 2 since 13 = 3^2 + 2^2 = 9 + 4.
Given n = 27, return 3 since 27 = 3^2 + 3^2 + 3^2 = 9 + 9 + 9.
"""
def min_square_num(num: int, accumulator: int = 0) -> int:
if num == 0:
return accumulator
elif num == 1:
return accumulator + 1
largest_square_divisor = int(num**0.5) ** 2
num = num - largest_square_divisor
accumulator += 1
return min_square_num(num, accumulator)
if __name__ == "__main__":
print(min_square_num(25)) # (5 ^ 2)
print(min_square_num(13)) # (2 ^ 2) + (3 ^ 2)
print(min_square_num(27)) # (5 ^ 2) + (1 ^ 2) + (1 ^ 2)
"""
SPECS:
TIME COMPLEXITY: O(n)
SPACE COMPLEXITY: O(log(n))
"""