-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathmain.py
222 lines (192 loc) · 9.92 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import os, random
import argparse
import multiprocessing as mp
import numpy as np
import torch
import torch.nn.functional as F
from torchvision import transforms, datasets
from torchvision.utils import make_grid
from tensorboardX import SummaryWriter
from modules import Model
def seed_everything(seed: int):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def seed_worker(worker_id):
worker_seed = torch.initial_seed() % 2**32
np.random.seed(worker_seed)
random.seed(worker_seed)
def train(data_loader, model, optimizer, args, writer, data_variance=1):
"""trianing the model"""
for images, _ in data_loader:
images = images.to(args.device)
optimizer.zero_grad()
x, loss_vq, perplexity, _ = model(images)
# loss function
loss_recons = F.mse_loss(x, images) / data_variance
loss = loss_recons + loss_vq
loss.backward()
writer.add_scalar('loss/train/reconstruction', loss_recons.item(), args.steps)
writer.add_scalar('loss/train/quantization', loss_vq.item(), args.steps)
writer.add_scalar('loss/train/perplexity', perplexity.item(), args.steps)
optimizer.step()
args.steps +=1
def test(data_loader, model, args, writer):
"""evaluation model"""
with torch.no_grad():
loss_recons, loss_vq = 0., 0.
for images, _ in data_loader:
images = images.to(args.device)
x, loss, _, _ = model(images)
loss_recons += F.mse_loss(x, images)
loss_vq += loss
loss_recons /= len(data_loader)
loss_vq /= len(data_loader)
# Logs
writer.add_scalar('loss/test/reconstruction', loss_recons.item(), args.steps)
writer.add_scalar('loss/test/quantization', loss_vq.item(), args.steps)
return loss_recons.item(), loss_vq.item()
def generate_samples(images, model, args):
with torch.no_grad():
images = images.to(args.device)
x, _, _, _ = model(images)
return x
def main(args):
writer = SummaryWriter(os.path.join(os.path.join(args.output_folder, 'logs'), args.exp_name))
save_filename = os.path.join(os.path.join(args.output_folder, 'models'), args.exp_name)
seed_everything(args.seed)
# load dataset
data_variance=1
if args.dataset in ['mnist', 'fashion-mnist', 'cifar10', 'celeba']:
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5), (0.5))
])
if args.dataset == 'mnist':
# Define the train & test datasets
train_dataset = datasets.MNIST(args.data_folder, train=True,
download=True, transform=transform)
test_dataset = datasets.MNIST(args.data_folder, train=False,
download=True, transform=transform)
data_variance=np.var(train_dataset.data.numpy() / 255.0)
num_channels = 1
elif args.dataset == 'fashion-mnist':
# Define the train & test datasets
train_dataset = datasets.FashionMNIST(args.data_folder,
train=True, download=True, transform=transform)
test_dataset = datasets.FashionMNIST(args.data_folder,
train=False, download=True, transform=transform)
data_variance=np.var(train_dataset.data.numpy() / 255.0)
num_channels = 1
elif args.dataset == 'cifar10':
# Define the train & test datasets
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
train_dataset = datasets.CIFAR10(args.data_folder,
train=True, download=True, transform=transform)
test_dataset = datasets.CIFAR10(args.data_folder,
train=False, download=True, transform=transform)
data_variance=np.var(train_dataset.data / 255.0)
num_channels = 3
elif args.dataset == 'celeba':
# Define the train & test datasets
transform = transforms.Compose([
transforms.Resize([128, 128]),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
train_dataset = datasets.CelebA(args.data_folder,
split='train', download=True, transform=transform)
test_dataset = datasets.CelebA(args.data_folder,
split='valid', download=True, transform=transform)
train_list = []
for i in range(len(train_dataset)):
train_list.append(train_dataset[i][0])
num_channels = 3
valid_dataset = test_dataset
# Define the dataloaders
g = torch.Generator()
g.manual_seed(args.seed)
train_loader = torch.utils.data.DataLoader(train_dataset,
batch_size=args.batch_size, shuffle=True,
num_workers=args.num_workers, pin_memory=True,
worker_init_fn=seed_worker, generator=g)
valid_loader = torch.utils.data.DataLoader(valid_dataset,
batch_size=args.batch_size, shuffle=False, drop_last=True,
num_workers=args.num_workers, pin_memory=True,
worker_init_fn=seed_worker, generator=g)
test_loader = torch.utils.data.DataLoader(test_dataset,
batch_size=32, shuffle=False,
worker_init_fn=seed_worker, generator=g)
# Define the model
model = Model(num_channels, args.hidden_size, args.num_residual_layers, args.num_residual_hidden,
args.num_embedding, args.embedding_dim, args.commitment_cost, args.distance,
args.anchor, args.first_batch, args.contras_loss).to(args.device)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
# Update the model
best_loss = -1.
for epoch in range(args.num_epochs):
# training and testing the model
train(train_loader, model, optimizer, args, writer, data_variance)
loss_rec, loss_vq = test(valid_loader, model, args, writer)
# visualization
images, _ = next(iter(test_loader))
rec_images = generate_samples(images, model, args)
input_grid = make_grid(images, nrow=8, range=(-1, 1), normalize=True)
rec_grid = make_grid(rec_images, nrow=8, range=(-1,1), normalize=True)
writer.add_image('original', input_grid, epoch + 1)
writer.add_image('reconstruction', rec_grid, epoch + 1)
# save model
if (epoch == 0) or (loss_rec < best_loss):
best_loss = loss_rec
with open('{0}/best.pt'.format(save_filename), 'wb') as f:
torch.save(model.state_dict(), f)
with open('{0}/model_{1}.pt'.format(save_filename, epoch + 1), 'wb') as f:
torch.save(model.state_dict(), f)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='CVQ-VAE')
# General
parser.add_argument('--data_folder', type=str, help='name of the data folder')
parser.add_argument('--dataset', type=str, help='name of the dataset (mnist, fashion-mnist, cifar10)')
parser.add_argument('--batch_size', type=int, default=1024, help='batch size (default: 1024)')
# Latent space
parser.add_argument('--hidden_size', type=int, default=128, help='size of the latent vectors (default: 128)')
parser.add_argument('--num_residual_hidden', type=int, default=32, help='size of the redisual layers (default: 32)')
parser.add_argument('--num_residual_layers', type=int, default=2, help='number of residual layers (default: 2)')
# Quantiser parameters
parser.add_argument('--embedding_dim', type=int, default=64, help='dimention of codebook (default: 64)')
parser.add_argument('--num_embedding', type=int, default=512, help='number of codebook (default: 512)')
parser.add_argument('--commitment_cost', type=float, default=0.25, help='hyperparameter for the commitment loss')
parser.add_argument('--distance', type=str, default='cos', help='distance for codevectors and features')
parser.add_argument('--anchor', type=str, default='closest', help='anchor sampling methods (random, closest, probrandom)')
parser.add_argument('--first_batch', action='store_true', help='offline version with only one time reinitialisation')
parser.add_argument('--contras_loss', action='store_true', help='using contrastive loss')
# Optimization
parser.add_argument('--seed', type=int, default=42, help="seed for everything")
parser.add_argument('--num_epochs', type=int, default=500, help='number of epochs (default: 100)')
parser.add_argument('--lr', type=float, default=3e-4, help='learning rate for Adam optimizer (default: 2e-4)')
# Miscellaneous
parser.add_argument('--output_folder', type=str, default='./', help='name of the output folder (default: vqvae)')
parser.add_argument('--exp_name', type=str, default='vqvae', help='name of the output folder (default: vqvae)')
parser.add_argument('--num_workers', type=int, default=mp.cpu_count() - 1, help='number of workers for trajectories sampling (default: {0})'.format(mp.cpu_count() - 1))
parser.add_argument('--device', type=str, default='cpu', help='set the device (cpu or cuda, default: cpu)')
args = parser.parse_args()
if not os.path.exists(os.path.join(args.output_folder, 'logs')):
os.makedirs(os.path.join(args.output_folder, 'logs'))
if not os.path.exists(os.path.join(args.output_folder, 'models')):
os.makedirs(os.path.join(args.output_folder, 'models'))
# Device
args.device = torch.device(args.device if torch.cuda.is_available() else 'cpu')
# Slurm
if 'SLURM_JOB_ID' in os.environ:
args.exp_name += '-{0}'.format(os.environ['SLURM_JOB_ID'])
if not os.path.exists(os.path.join(os.path.join(args.output_folder, 'models'), args.exp_name)):
os.makedirs(os.path.join(os.path.join(args.output_folder, 'models'), args.exp_name))
args.steps = 0
main(args)