forked from jonnyhuck/green-visibility-index
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgvi.py
195 lines (150 loc) · 6.12 KB
/
gvi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
"""
* Green Visibility Index Script
"""
from uuid import uuid1
from os import makedirs
from affine import Affine
from os.path import exists
from math import exp, hypot
# from time import perf_counter
from rasterio import open as rio_open
from rasterio.transform import rowcol, xy
from skimage.draw import line, disk, circle_perimeter
from numpy import zeros, unique, multiply, array, column_stack
def coords_2_array(a, x, y):
"""
* convert between coords and array position
* returns row,col (y,x) as expected by rasterio
"""
r, c = rowcol(a, x, y)
return int(r), int(c)
def array_2_coords(a, row, col):
"""
* convert between array position and coords
* params are row,col (y,x) as expected by rasterio
* returns coords at the CENTRE of the cell
"""
x, y = xy(a, row, col)
return int(x), int(y)
def line_of_sight(r0, c0, r1, c1, observer_height, resolution, target_height, dsm_data, dtm_data, output):
"""
* Runs a single ray-trace from one point to another point, returning a list of visible cells
"""
# init variables for loop
cur_dydx = -float('inf') # current dydx (base of object)
max_dydx = -float('inf') # biggest dydx so far
# top_dydx = -float('inf') # current dydx (top of object)
distance_travelled = 0 # how far we have travelled along the ray
# get the viewer height
height0 = dtm_data[(r0, c0)] + observer_height
# get the pixels in the line (excluding the first one )
pixels = column_stack(line(r0, c0, r1, c1))[1:]
# loop along the pixels in the line
for r, c in pixels:
# if we go off the edge of the data, stop looping
if not 0 <= r < dtm_data.shape[0] or not 0 <= c < dtm_data.shape[1]:
break
# distance travelled so far
distance_travelled = hypot(c0 - c, r0 - r)
''' comment this out as long as we use 0 as target offset '''
## set cell as visible if the height of the top of the object from the DTM > previous max
# top_dydx = (dsm_data[(r, c)] - height0 + target_height) / distance_travelled
# if (top_dydx >= max_dydx):
# output[(r, c)] = 1
#
## update max dydx the height of the base of the object on the DSM > previous max
# cur_dydx = (dsm_data[(r, c)] - height0) / distance_travelled
# if (cur_dydx > max_dydx):
# max_dydx = cur_dydx
# update max dydx the height of the base of the object on the DSM > previous max
cur_dydx = (dsm_data[(r, c)] - height0) / (distance_travelled * resolution)
if (cur_dydx > max_dydx):
max_dydx = cur_dydx
output[(r, c)] = 1
# return updated output surface
return output
def viewshed(r0, c0, radius_px, resolution, observer_height, target_height, dsm_data, dtm_data, a):
"""
* Use Bresenham's Circle / Midpoint algorithm to determine endpoints for viewshed
"""
# create output array at the same dimensions as data for viewshed
output = zeros(dtm_data.shape)
# set the start location as visible automatically
output[(r0, c0)] = 1
# get pixels in the circle
for r, c in column_stack(circle_perimeter(r0, c0, radius_px)):
# calculate line of sight to each pixel
output = line_of_sight(r0, c0, r, c, resolution, observer_height, target_height, dsm_data, dtm_data, output)
# return the resulting viewshed
return output
def f(mask):
"""
* main function for running with parallel.py
"""
# create an output array at the same dimensions as data for output
gvi = zeros((mask["meta"]["height"], mask["meta"]["width"]))
# radius in pixels
radius_px = int(mask["options"]["radius"] // mask['meta']['transform'][0])
# build weighting mask
weighting_mask = zeros((radius_px*2, radius_px*2))
for r, c in column_stack(disk((radius_px, radius_px), radius_px, shape=weighting_mask.shape)):
weighting_mask[(r, c)] = exp(-0.0003 * (hypot(radius_px - c, radius_px - r) * mask['meta']['transform'][0]))
# get pixel references for aoi extents
min_r, min_c = coords_2_array(mask["meta"]["transform"], mask["aoi"].bounds[0], mask["aoi"].bounds[3])
max_r, max_c = coords_2_array(mask["meta"]["transform"], mask["aoi"].bounds[2], mask["aoi"].bounds[1])
# loop through dataset rows and columns
for r in range(min_r, max_r+1):
for c in range(min_c, max_c+1):
# print(r, c)
# t1_start = perf_counter()
# call (weighted) viewshed
output = viewshed(r, c, radius_px, # coords and radius in pixels
mask['meta']['transform'][0], # resolution of datasets
mask["options"]["o_height"], # observer height
mask["options"]["t_height"], # target height
mask["dsm"], # dsm dataset
mask["dtm"], # dtm dataset
mask["meta"]["transform"]) # affine transform
# extract the viewshed data from the output surface and apply weighting mask
visible = output[r-radius_px:r+radius_px, c-radius_px:c+radius_px] * weighting_mask
# print(f"\tviewshed took {perf_counter() - t1_start}s", visible.shape, visible.sum())
# t1_start = perf_counter()
# multiply extract of (weighted) viewshed with extract of (weighted) green dataset
visible_green = visible * (mask["green"][r-radius_px:r+radius_px, c-radius_px:c+radius_px] * weighting_mask)
# print(f"\tvisible green {perf_counter() - t1_start}s", visible_green.shape, visible_green.sum())
# t1_start = perf_counter()
# get the ratio for greenness in the view
gvi[(r,c)] = visible_green.sum() / visible.sum()
# print(f"\tgvi took {perf_counter() - t1_start}s", gvi[(r,c)])
# print()
# clip gvi to aoi bounds
gvi = gvi[min_r:max_r+1, min_c:max_c+1]
# check that tmp folder exists
if not exists('./tmp/'):
makedirs('tmp')
# make unique filename
filepath = f'./tmp/{str(uuid1())[:8]}.tif'
# output file with updated dimensions and transform
with rio_open(filepath, 'w',
driver = mask["meta"]["driver"],
height = gvi.shape[0],
width = gvi.shape[1],
count = mask["meta"]["count"],
dtype = 'float64',
crs = mask["meta"]["crs"],
transform = Affine(
mask['meta']['transform'][0],
mask['meta']['transform'][1],
mask["aoi"].bounds[0],
mask['meta']['transform'][3],
mask['meta']['transform'][4],
mask["aoi"].bounds[3]),
) as dst:
dst.write(gvi, 1)
# return the filepath to the result
return filepath
"""
* Do not call this script directly
"""
if __name__ == '__main__':
print("please call this script using parallel.py")