forked from rerun-io/rerun
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathupload_image.py
executable file
·415 lines (332 loc) · 12 KB
/
upload_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
#!/usr/bin/env python3
"""
Upload an image to Google Cloud.
Installation
------------
Requires the following packages:
pip install google-cloud-storage
Before running, you have to authenticate via the Google Cloud CLI:
- Install it (https://cloud.google.com/storage/docs/gsutil_install)
- Set up credentials (https://cloud.google.com/storage/docs/gsutil_install#authenticate)
If you get this error:
File "…/site-packages/cryptography/hazmat/primitives/asymmetric/utils.py", line 6, in <module>
from cryptography.hazmat.bindings._rust import asn1
pyo3_runtime.PanicException: Python API call failed
Then run `python3 -m pip install cryptography==38.0.4`
(https://levelup.gitconnected.com/fix-attributeerror-module-lib-has-no-attribute-openssl-521a35d83769)
Usage
-----
Use the script:
python3 scripts/upload_image.py --help
or the just command:
just upload --help
"""
from __future__ import annotations
import argparse
import hashlib
import logging
import mimetypes
import os
import shutil
import subprocess
import sys
import tempfile
import urllib.parse
import urllib.request
from io import BytesIO
from pathlib import Path
import PIL
import PIL.Image
import PIL.ImageGrab
import requests
import tqdm
from google.cloud import storage
from PIL.Image import Image, Resampling
SIZES = [
480,
768,
1024,
1200,
]
def image_from_clipboard() -> Image:
"""
Get image from the clipboard.
On Mac, `PIL.ImageGrab.grabclipboard()` compresses to JPG. This function uses the same code but uses PNG instead.
"""
if sys.platform == "darwin":
fh, filepath = tempfile.mkstemp(".png")
os.close(fh)
commands = [
'set theFile to (open for access POSIX file "' + filepath + '" with write permission)',
"try",
" write (the clipboard as «class PNGf») to theFile",
"end try",
"close access theFile",
]
script = ["osascript"]
for command in commands:
script += ["-e", command]
subprocess.call(script)
im = None
if os.stat(filepath).st_size != 0:
im = PIL.Image.open(filepath)
im.load()
os.unlink(filepath)
return im
else:
return PIL.ImageGrab.grabclipboard()
class Uploader:
def __init__(self, pngcrush: bool):
gcs = storage.Client("rerun-open")
self.bucket = gcs.bucket("rerun-static-img")
self.run_pngcrush = pngcrush
def upload_file(self, path: Path) -> str:
"""
Upload a single file to Google Cloud.
Parameters
----------
path : Path
The path to the file to upload.
Returns
-------
str
The name of the uploaded file.
"""
image_data = path.read_bytes()
digest = data_hash(image_data)
object_name = f"{digest}_{path.name}"
content_type, content_encoding = mimetypes.guess_type(path)
self.upload_data(image_data, object_name, content_type, content_encoding)
return object_name
def upload_stack_from_file(self, image_path: Path, name: str | None = None) -> str:
"""
Upload an image stack from a file.
Parameters
----------
image_path : Path
The path to the image file.
name : str, optional
The name of the image stack. If None, the file name is used.
Returns
-------
str
The `<picture>` tag for the image stack.
"""
image = PIL.Image.open(image_path)
content_type, _ = mimetypes.guess_type(image_path)
return self.upload_stack(
image,
name=name if name is not None else image_path.stem,
output_format=image.format,
file_ext=image_path.suffix,
content_type=content_type,
)
def upload_stack_from_clipboard(self, name: str) -> str:
"""
Upload an image stack from the clipboard.
Parameters
----------
name : str
The name of the image stack.
Returns
-------
str
The `<picture>` tag for the image stack.
"""
clipboard = image_from_clipboard()
if isinstance(clipboard, PIL.Image.Image):
image = clipboard
return self.upload_stack(
image,
name=name,
)
else:
raise RuntimeError("No image found on clipboard")
def upload_stack(
self,
image: Image,
name: str,
output_format: str = "PNG",
file_ext: str = ".png",
content_type: str = "image/png",
) -> str:
"""
Create a multi-resolution stack and upload it.
Parameters
----------
image : PIL.Image.Image
The image to upload.
name : str
The name of the image.
output_format : str, optional
The output format of the image.
file_ext : str, optional
The file extension of the image.
content_type : str, optional
The content type of the image.
Returns
-------
str
The `<picture>` HTML tag for the image stack.
"""
logging.info(f"Base image width: {image.width}px")
# build image stack
image_stack: list[tuple[str, int | None, Image]] = []
for width in SIZES:
if image.width > width:
logging.info(f"Resizing to: {width}px")
new_image = image.resize(
size=(width, int(width * image.height / image.width)), resample=Resampling.LANCZOS
)
image_stack.append((f"{name}_{width}w", width, new_image))
image_stack.append((f"{name}_full", None, image))
html_str = "<picture>\n"
# upload images
for name, width, image in image_stack:
with BytesIO() as buffer:
image.save(buffer, output_format, optimize=True, quality=80, compress_level=9)
image_data = buffer.getvalue()
digest = data_hash(image_data)
object_name = f"{digest}_{name}{file_ext}"
self.upload_data(image_data, object_name, content_type, None)
if width is not None:
html_str += (
f' <source media="(max-width: {width}px)" srcset="https://static.rerun.io/{object_name}">\n'
)
else:
html_str += f' <img src="https://static.rerun.io/{object_name}" alt="">\n'
html_str += "</picture>"
return html_str
def upload_data(self, data: bytes, name: str, content_type: str | None = None, content_encoding: str | None = None):
"""
Low-level upload of data.
Parameters
----------
data : bytes
The data to upload.
name : str
The name of the object.
content_type : str, optional
The content type of the object.
content_encoding : str, optional
The content encoding of the object.
"""
if self.run_pngcrush and content_type == "image/png":
data = run_pngcrush(data)
logging.info(f"Uploading {name} (size: {len(data)}, type: {content_type}, encoding: {content_encoding})")
destination = self.bucket.blob(name)
destination.content_type = content_type
destination.content_encoding = content_encoding
stream = BytesIO(data)
destination.upload_from_file(stream)
def run_pngcrush(data: bytes) -> bytes:
"""
Run pngcrush on some data.
Parameters
----------
data : bytes
The PNG data to crush.
Returns
-------
bytes
The crushed PNG data.
"""
with tempfile.TemporaryDirectory() as tmpdir:
input_file = Path(tmpdir) / "input.png"
input_file.write_bytes(data)
output_file = Path(tmpdir) / "output.png"
os.system(f"pngcrush -q -warn -rem allb -reduce {input_file} {output_file}")
output_data = output_file.read_bytes()
input_len = len(data)
output_len = len(output_data)
if output_len > input_len:
logging.info("pngcrush failed to reduce file size")
return data
else:
logging.info(
f"pngcrush reduced size from {input_len} to {output_len} bytes "
f"({(input_len - output_len) *100/ input_len:.2f}%)"
)
return output_data
def data_hash(data: bytes) -> str:
"""Compute a sha1 hash digest of some data."""
return hashlib.sha1(data).hexdigest()
def download_file(url: str, path: Path) -> None:
path.parent.mkdir(parents=True, exist_ok=True)
logging.info("Downloading %s to %s", url, path)
response = requests.get(url, stream=True)
with tqdm.tqdm.wrapattr(
open(path, "wb"),
"write",
miniters=1,
total=int(response.headers.get("content-length", 0)),
desc=f"Downloading {path.name}",
) as f:
for chunk in response.iter_content(chunk_size=4096):
f.write(chunk)
def run(args) -> None:
"""Run the script based on the provided args."""
try:
if shutil.which("pngcrush") is None and not args.skip_pngcrush:
raise RuntimeError("pngcrush is not installed, consider using --skip-pngcrush")
uploader = Uploader(not args.skip_pngcrush)
if args.single:
object_name = uploader.upload_file(args.path)
print(f"\nhttps://static.rerun.io/{object_name}")
else:
if args.path is None:
if args.name is None:
raise RuntimeError("Name is required when uploading from clipboard")
else:
html_str = uploader.upload_stack_from_clipboard(args.name)
else:
html_str = uploader.upload_stack_from_file(args.path, args.name)
print("\n" + html_str)
except RuntimeError as e:
print(f"Error: {e.args[0]}", file=sys.stderr)
DESCRIPTION = """Upload an image to static.rerun.io.
Example screenshots
-------------------
To make example screenshots, follow these steps:
1. Run the example.
2. Resize the Rerun window to an approximate 16:9 aspect ratio and a width of ~1500px.
3. Groom the blueprints and panel visibility to your liking.
4. Take a screenshot using the command palette.
5. Run: just upload --name <name_of_example>
6. Copy the output HTML tag and paste it into the README.md file.
Other uses
----------
Download an image, optimize it and create a multi-resolution stack:
just upload --name <name_of_stack> https://example.com/path/to/image.png
"""
def main() -> None:
parser = argparse.ArgumentParser(description=DESCRIPTION, formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument(
"path", type=str, nargs="?", help="Image file URL or path. If not provided, use the clipboard's content."
)
parser.add_argument(
"--single", action="store_true", help="Upload a single image instead of creating a multi-resolution stack."
)
parser.add_argument("--name", type=str, help="Image name (required when uploading from clipboard).")
parser.add_argument("--skip-pngcrush", action="store_true", help="Skip PNGCrush.")
parser.add_argument("--debug", action="store_true", help="Enable debug logging.")
args = parser.parse_args()
if args.debug:
logging.basicConfig(level=logging.DEBUG)
else:
logging.basicConfig(level=logging.INFO)
# The entire block is wrapped around tmp_dir such that it exists for the entire run.
with tempfile.TemporaryDirectory() as tmp_dir:
# check if path as a URL and download it.
if args.path is not None:
res = urllib.parse.urlparse(args.path)
if res.scheme and res.netloc:
file_name = os.path.basename(res.path)
local_path = Path(tmp_dir) / file_name
download_file(args.path, local_path)
args.path = Path(local_path)
else:
args.path = Path(args.path)
run(args)
if __name__ == "__main__":
main()