forked from Lightning-AI/litgpt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
330 lines (271 loc) · 13.5 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
"""Full definition of a GPT NeoX Language Model, all of it in this single file.
Based on the nanoGPT implementation: https://github.com/karpathy/nanoGPT and
https://github.com/EleutherAI/gpt-neox/tree/main/megatron/model.
"""
import math
from typing import Any, List, Optional, Tuple
import torch
import torch.nn as nn
from lightning_utilities.core.imports import RequirementCache
from typing_extensions import Self
from lit_gpt.config import Config
RoPECache = Tuple[torch.Tensor, torch.Tensor]
KVCache = Tuple[torch.Tensor, torch.Tensor]
FlashAttention2Available = RequirementCache("flash-attn>=2.0.0.post1")
class GPT(nn.Module):
def __init__(self, config: Config) -> None:
super().__init__()
assert config.padded_vocab_size is not None
self.config = config
self.lm_head = nn.Linear(config.n_embd, config.padded_vocab_size, bias=False)
self.transformer = nn.ModuleDict(
dict(
wte=nn.Embedding(config.padded_vocab_size, config.n_embd),
h=nn.ModuleList(Block(config) for _ in range(config.n_layer)),
ln_f=config.norm_class(config.n_embd, eps=config.norm_eps),
)
)
self.rope_cache: Optional[RoPECache] = None
self.mask_cache: Optional[torch.Tensor] = None
self.kv_caches: List[KVCache] = []
def _init_weights(self, module: nn.Module) -> None:
"""Meant to be used with `gpt.apply(gpt._init_weights)`."""
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def reset_cache(self) -> None:
self.kv_caches.clear()
if self.mask_cache is not None and self.mask_cache.device.type == "xla":
# https://github.com/Lightning-AI/lit-gpt/pull/83#issuecomment-1558150179
self.rope_cache = None
self.mask_cache = None
def forward(
self, idx: torch.Tensor, max_seq_length: Optional[int] = None, input_pos: Optional[torch.Tensor] = None
) -> torch.Tensor:
B, T = idx.size()
use_kv_cache = input_pos is not None
block_size = self.config.block_size
if max_seq_length is None:
max_seq_length = block_size
if use_kv_cache: # not relevant otherwise
assert (
max_seq_length >= T
), f"Cannot forward sequence of length {T}, max seq length is only {max_seq_length}"
assert max_seq_length <= block_size, f"Cannot attend to {max_seq_length}, block size is only {block_size}"
assert block_size >= T, f"Cannot forward sequence of length {T}, block size is only {block_size}"
if self.rope_cache is None:
self.rope_cache = self.build_rope_cache(idx)
# passing `attn_mask` to SDPA downgrades it to use the inefficient implementation. since we only need the mask
# for the kv-cache support (only during inference), we only create it in that situation
# this will be resolved by https://github.com/pytorch/pytorch/issues/96099
if use_kv_cache and self.mask_cache is None:
self.mask_cache = self.build_mask_cache(idx)
cos, sin = self.rope_cache
if use_kv_cache:
cos = cos.index_select(0, input_pos)
sin = sin.index_select(0, input_pos)
mask = self.mask_cache.index_select(2, input_pos)
mask = mask[:, :, :, :max_seq_length]
else:
cos = cos[:T]
sin = sin[:T]
mask = None
# forward the model itself
x = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd)
if not use_kv_cache:
for block in self.transformer.h:
x, *_ = block(x, (cos, sin), max_seq_length)
else:
self.kv_caches = self.kv_caches or self.build_kv_caches(x, max_seq_length, cos.size(-1))
for i, block in enumerate(self.transformer.h):
x, self.kv_caches[i] = block(x, (cos, sin), max_seq_length, mask, input_pos, self.kv_caches[i])
x = self.transformer.ln_f(x)
return self.lm_head(x) # (b, t, vocab_size)
@classmethod
def from_name(cls, name: str, **kwargs: Any) -> Self:
return cls(Config.from_name(name, **kwargs))
def build_rope_cache(self, idx: torch.Tensor) -> RoPECache:
return build_rope_cache(
seq_len=self.config.block_size,
n_elem=int(self.config.rotary_percentage * self.config.head_size),
dtype=torch.get_default_dtype(),
device=idx.device,
condense_ratio=self.config.condense_ratio,
)
def build_mask_cache(self, idx: torch.Tensor) -> torch.Tensor:
ones = torch.ones((self.config.block_size, self.config.block_size), device=idx.device, dtype=torch.bool)
return torch.tril(ones).unsqueeze(0).unsqueeze(0)
def build_kv_caches(self, idx: torch.Tensor, max_seq_length: int, rope_cache_length: int) -> List[KVCache]:
B = idx.size(0)
heads = 1 if self.config.n_query_groups == 1 else self.config.n_head
k_cache_shape = (
B,
heads,
max_seq_length,
rope_cache_length + self.config.head_size - int(self.config.rotary_percentage * self.config.head_size),
)
v_cache_shape = (B, heads, max_seq_length, self.config.head_size)
device = idx.device
return [
(torch.zeros(k_cache_shape, device=device), torch.zeros(v_cache_shape, device=device))
for _ in range(self.config.n_layer)
]
class Block(nn.Module):
def __init__(self, config: Config) -> None:
super().__init__()
self.norm_1 = config.norm_class(config.n_embd, eps=config.norm_eps)
self.attn = CausalSelfAttention(config)
if not config.shared_attention_norm:
self.norm_2 = config.norm_class(config.n_embd, eps=config.norm_eps)
self.mlp = config.mlp_class(config)
self.config = config
def forward(
self,
x: torch.Tensor,
rope: RoPECache,
max_seq_length: int,
mask: Optional[torch.Tensor] = None,
input_pos: Optional[torch.Tensor] = None,
kv_cache: Optional[KVCache] = None,
) -> Tuple[torch.Tensor, Optional[KVCache]]:
n_1 = self.norm_1(x)
h, new_kv_cache = self.attn(n_1, rope, max_seq_length, mask, input_pos, kv_cache)
if self.config.parallel_residual:
n_2 = n_1 if self.config.shared_attention_norm else self.norm_2(x)
x = x + h + self.mlp(n_2)
else:
if self.config.shared_attention_norm:
raise NotImplementedError(
"No checkpoint amongst the ones we support uses this configuration"
" (non-parallel residual and shared attention norm)."
)
x = x + h
x = x + self.mlp(self.norm_2(x))
return x, new_kv_cache
class CausalSelfAttention(nn.Module):
def __init__(self, config: Config) -> None:
super().__init__()
shape = (config.n_head + 2 * config.n_query_groups) * config.head_size
# key, query, value projections for all heads, but in a batch
self.attn = nn.Linear(config.n_embd, shape, bias=config.bias)
# output projection
self.proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
self.config = config
def forward(
self,
x: torch.Tensor,
rope: RoPECache,
max_seq_length: int,
mask: Optional[torch.Tensor] = None,
input_pos: Optional[torch.Tensor] = None,
kv_cache: Optional[KVCache] = None,
) -> Tuple[torch.Tensor, Optional[KVCache]]:
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
qkv = self.attn(x)
# assemble into a number of query groups to support MHA, MQA and GQA together (see `config.n_query_groups`)
q_per_kv = self.config.n_head // self.config.n_query_groups
total_qkv = q_per_kv + 2 # each group has 1+ queries, 1 key, and 1 value
qkv = qkv.view(B, T, self.config.n_query_groups, total_qkv, self.config.head_size)
qkv = qkv.permute(0, 2, 3, 1, 4) # (B, n_query_groups, total_qkv, T, hs)
# split batched computation into three
q, k, v = qkv.split((q_per_kv, 1, 1), dim=2)
# repeat k and v if necessary
if self.config.n_query_groups != 1: # doing this would require a full kv cache with MQA (inefficient!)
# for MHA this is a no-op
k = k.expand(B, self.config.n_query_groups, q_per_kv, T, self.config.head_size)
v = v.expand(B, self.config.n_query_groups, q_per_kv, T, self.config.head_size)
q = q.reshape(B, -1, T, self.config.head_size) # (B, nh_q, T, hs)
k = k.reshape(B, -1, T, self.config.head_size) # (B, nh_k, T, hs)
v = v.reshape(B, -1, T, self.config.head_size) # (B, nh_v, T, hs)
n_elem = int(self.config.rotary_percentage * self.config.head_size)
cos, sin = rope
q_roped = apply_rope(q[..., :n_elem], cos, sin)
k_roped = apply_rope(k[..., :n_elem], cos, sin)
q = torch.cat((q_roped, q[..., n_elem:]), dim=-1)
k = torch.cat((k_roped, k[..., n_elem:]), dim=-1)
if kv_cache is not None:
cache_k, cache_v = kv_cache
cache_k, cache_v = cache_k.to(dtype=k.dtype), cache_v.to(dtype=v.dtype)
# check if reached token limit
if input_pos[-1] >= max_seq_length:
input_pos = torch.tensor(max_seq_length - 1, device=input_pos.device)
# shift 1 position to the left
cache_k = torch.roll(cache_k, -1, dims=2)
cache_v = torch.roll(cache_v, -1, dims=2)
k = cache_k.index_copy_(2, input_pos, k)
v = cache_v.index_copy_(2, input_pos, v)
kv_cache = k, v
y = self.scaled_dot_product_attention(q, k, v, mask=mask)
y = y.reshape(B, T, C) # re-assemble all head outputs side by side
# output projection
y = self.proj(y)
return y, kv_cache
def scaled_dot_product_attention(
self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, mask: Optional[torch.Tensor] = None
):
scale = 1.0 / math.sqrt(self.config.head_size)
if (
FlashAttention2Available
and mask is None
and q.device.type == "cuda"
and q.dtype in (torch.float16, torch.bfloat16)
):
from flash_attn import flash_attn_func
# flash-attn requires (B, T, nh, hs)
q = q.transpose(1, 2)
k = k.transpose(1, 2)
v = v.transpose(1, 2)
return flash_attn_func(q, k, v, dropout_p=0.0, softmax_scale=scale, causal=True)
y = torch.nn.functional.scaled_dot_product_attention(
q, k, v, attn_mask=mask, dropout_p=0.0, scale=scale, is_causal=mask is None
)
return y.transpose(1, 2)
class GptNeoxMLP(nn.Module):
def __init__(self, config: Config) -> None:
super().__init__()
self.fc = nn.Linear(config.n_embd, config.intermediate_size, bias=config.bias)
self.proj = nn.Linear(config.intermediate_size, config.n_embd, bias=config.bias)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.fc(x)
x = torch.nn.functional.gelu(x)
return self.proj(x)
class LLaMAMLP(nn.Module):
def __init__(self, config: Config) -> None:
super().__init__()
self.fc_1 = nn.Linear(config.n_embd, config.intermediate_size, bias=config.bias)
self.fc_2 = nn.Linear(config.n_embd, config.intermediate_size, bias=config.bias)
self.proj = nn.Linear(config.intermediate_size, config.n_embd, bias=config.bias)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x_fc_1 = self.fc_1(x)
x_fc_2 = self.fc_2(x)
x = torch.nn.functional.silu(x_fc_1) * x_fc_2
return self.proj(x)
def build_rope_cache(
seq_len: int, n_elem: int, dtype: torch.dtype, device: torch.device, base: int = 10000, condense_ratio: int = 1
) -> RoPECache:
"""Enhanced Transformer with Rotary Position Embedding.
Derived from: https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/
transformers/rope/__init__.py. MIT License:
https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/license.
"""
# $\Theta = {\theta_i = 10000^{\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$
theta = 1.0 / (base ** (torch.arange(0, n_elem, 2, device=device) / n_elem))
# Create position indexes `[0, 1, ..., seq_len - 1]`
seq_idx = torch.arange(seq_len, device=device) / condense_ratio
# Calculate the product of position index and $\theta_i$
idx_theta = torch.outer(seq_idx, theta).repeat(1, 2)
cos, sin = torch.cos(idx_theta), torch.sin(idx_theta)
# this is to mimic the behaviour of complex32, else we will get different results
if dtype in (torch.float16, torch.bfloat16, torch.int8):
return cos.half(), sin.half()
return cos, sin
def apply_rope(x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor) -> torch.Tensor:
head_size = x.size(-1)
x1 = x[..., : head_size // 2] # (B, nh, T, hs/2)
x2 = x[..., head_size // 2 :] # (B, nh, T, hs/2)
rotated = torch.cat((-x2, x1), dim=-1) # (B, nh, T, hs)
roped = (x * cos) + (rotated * sin)
return roped.type_as(x)