forked from TencentARC/PhotoMaker
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_v2.py
executable file
·156 lines (133 loc) · 6.11 KB
/
model_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# Merge image encoder and fuse module to create an ID Encoder
# send multiple ID images, we can directly obtain the updated text encoder containing a stacked ID embedding
import torch
import torch.nn as nn
from transformers.models.clip.modeling_clip import CLIPVisionModelWithProjection
from transformers.models.clip.configuration_clip import CLIPVisionConfig
from .resampler import FacePerceiverResampler
VISION_CONFIG_DICT = {
"hidden_size": 1024,
"intermediate_size": 4096,
"num_attention_heads": 16,
"num_hidden_layers": 24,
"patch_size": 14,
"projection_dim": 768
}
class MLP(nn.Module):
def __init__(self, in_dim, out_dim, hidden_dim, use_residual=True):
super().__init__()
if use_residual:
assert in_dim == out_dim
self.layernorm = nn.LayerNorm(in_dim)
self.fc1 = nn.Linear(in_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, out_dim)
self.use_residual = use_residual
self.act_fn = nn.GELU()
def forward(self, x):
residual = x
x = self.layernorm(x)
x = self.fc1(x)
x = self.act_fn(x)
x = self.fc2(x)
if self.use_residual:
x = x + residual
return x
class QFormerPerceiver(nn.Module):
def __init__(self, id_embeddings_dim, cross_attention_dim, num_tokens, embedding_dim=1024, use_residual=True, ratio=4):
super().__init__()
self.num_tokens = num_tokens
self.cross_attention_dim = cross_attention_dim
self.use_residual = use_residual
print(cross_attention_dim*num_tokens)
self.token_proj = nn.Sequential(
nn.Linear(id_embeddings_dim, id_embeddings_dim*ratio),
nn.GELU(),
nn.Linear(id_embeddings_dim*ratio, cross_attention_dim*num_tokens),
)
self.token_norm = nn.LayerNorm(cross_attention_dim)
self.perceiver_resampler = FacePerceiverResampler(
dim=cross_attention_dim,
depth=4,
dim_head=128,
heads=cross_attention_dim // 128,
embedding_dim=embedding_dim,
output_dim=cross_attention_dim,
ff_mult=4,
)
def forward(self, x, last_hidden_state):
x = self.token_proj(x)
x = x.reshape(-1, self.num_tokens, self.cross_attention_dim)
x = self.token_norm(x) # cls token
out = self.perceiver_resampler(x, last_hidden_state) # retrieve from patch tokens
if self.use_residual: # TODO: if use_residual is not true
out = x + 1.0 * out
return out
class FuseModule(nn.Module):
def __init__(self, embed_dim):
super().__init__()
self.mlp1 = MLP(embed_dim * 2, embed_dim, embed_dim, use_residual=False)
self.mlp2 = MLP(embed_dim, embed_dim, embed_dim, use_residual=True)
self.layer_norm = nn.LayerNorm(embed_dim)
def fuse_fn(self, prompt_embeds, id_embeds):
stacked_id_embeds = torch.cat([prompt_embeds, id_embeds], dim=-1)
stacked_id_embeds = self.mlp1(stacked_id_embeds) + prompt_embeds
stacked_id_embeds = self.mlp2(stacked_id_embeds)
stacked_id_embeds = self.layer_norm(stacked_id_embeds)
return stacked_id_embeds
def forward(
self,
prompt_embeds,
id_embeds,
class_tokens_mask,
) -> torch.Tensor:
# id_embeds shape: [b, max_num_inputs, 1, 2048]
id_embeds = id_embeds.to(prompt_embeds.dtype)
num_inputs = class_tokens_mask.sum().unsqueeze(0) # TODO: check for training case
batch_size, max_num_inputs = id_embeds.shape[:2]
# seq_length: 77
seq_length = prompt_embeds.shape[1]
# flat_id_embeds shape: [b*max_num_inputs, 1, 2048]
flat_id_embeds = id_embeds.view(
-1, id_embeds.shape[-2], id_embeds.shape[-1]
)
# valid_id_mask [b*max_num_inputs]
valid_id_mask = (
torch.arange(max_num_inputs, device=flat_id_embeds.device)[None, :]
< num_inputs[:, None]
)
valid_id_embeds = flat_id_embeds[valid_id_mask.flatten()]
prompt_embeds = prompt_embeds.view(-1, prompt_embeds.shape[-1])
class_tokens_mask = class_tokens_mask.view(-1)
valid_id_embeds = valid_id_embeds.view(-1, valid_id_embeds.shape[-1])
# slice out the image token embeddings
image_token_embeds = prompt_embeds[class_tokens_mask]
stacked_id_embeds = self.fuse_fn(image_token_embeds, valid_id_embeds)
assert class_tokens_mask.sum() == stacked_id_embeds.shape[0], f"{class_tokens_mask.sum()} != {stacked_id_embeds.shape[0]}"
prompt_embeds.masked_scatter_(class_tokens_mask[:, None], stacked_id_embeds.to(prompt_embeds.dtype))
updated_prompt_embeds = prompt_embeds.view(batch_size, seq_length, -1)
return updated_prompt_embeds
class PhotoMakerIDEncoder_CLIPInsightfaceExtendtoken(CLIPVisionModelWithProjection):
def __init__(self, id_embeddings_dim=512):
super().__init__(CLIPVisionConfig(**VISION_CONFIG_DICT))
self.fuse_module = FuseModule(2048)
self.visual_projection_2 = nn.Linear(1024, 1280, bias=False)
cross_attention_dim = 2048
# projection
self.num_tokens = 2
self.cross_attention_dim = cross_attention_dim
self.qformer_perceiver = QFormerPerceiver(
id_embeddings_dim,
cross_attention_dim,
self.num_tokens,
)
def forward(self, id_pixel_values, prompt_embeds, class_tokens_mask, id_embeds):
b, num_inputs, c, h, w = id_pixel_values.shape
id_pixel_values = id_pixel_values.view(b * num_inputs, c, h, w)
last_hidden_state = self.vision_model(id_pixel_values)[0]
id_embeds = id_embeds.view(b * num_inputs, -1)
id_embeds = self.qformer_perceiver(id_embeds, last_hidden_state)
id_embeds = id_embeds.view(b, num_inputs, self.num_tokens, -1)
updated_prompt_embeds = self.fuse_module(prompt_embeds, id_embeds, class_tokens_mask)
return updated_prompt_embeds
if __name__ == "__main__":
PhotoMakerIDEncoder_CLIPInsightfaceExtendtoken()